Spitsbergen river waters - chemistry and anthropopression analyses

We are very pleased to announce the latest scientific publication by a research team consisting mainly of staff from our Institute and published in the journal PeerJ (IF = 2.379):

Lehmann-Konera S., Kociuba W., Chmiel S., Franczak Ł., Polkowska Ż., 2021. Effects of biotransport and hydro-meteorological conditions on transport of trace elements in the Scott River (Bellsund, Spitsbergen). PeerJ 9:e11477 DOI 10.7717/peerj.11477.

Abstract: The shaping of surface water chemistry in the Svalbard Archipelago is strongly dependent on the geology of the catchment and the process of long-range transport of atmospheric pollutants (LRATP). It was found that the dissolved trace elements in the Scott River, which catchment is characterized by a decreasing degree of glaciation, were of the natural origin (i.a. weathering and dissolution of local geological substratum). The exception was Zn originated from LRATP. The paper describe the influence changes in hydro-meteorological conditions and the presence of a seabird colony on the variability in the transport of trace elements within the Scott River catchment. The work assesses long-time fluctuations in the concentration of twenty five trace elements (i.a. Al, Cr, Cu, Pb, Sr, and Zn) from eighty-four surface water samples and their relation to changes in water discharge (Q), precipitation (P), pH, and dissolved organic carbon (DOC) at two river sites (with one being under the influence of the biotransport factor). Based on the results of matrix correlation and cluster analysis it was found that the additional load of DOC from the nesting site of Larus Argentatus in the mouth section of the river drastically changed the hydro-geochemical cycle of Co, Ni, Zn, Ga, Sr, Rb, Ba and U (0.30 < r < 0.51). Furthermore, the results of cluster analysis confirmed that the bird colony’s nesting site was strongly responsible for the presence of U, Rb, Zn, Ni and marine-derived nutrients (e.g. Se and Li). The discharge of glacier meltwater and the alkaline character of water have a negative effect on the dissolution of Li and Mn (−0.31 < r < −0.51), but positively affect the level of Rb and U (r = 0.31 and 0.35, respectively) due to it being washing out a seabird nesting colony in the mouth section of the Scott River. It was observed that the event of rises in air temperature and rain, which results in increased water discharge, caused an intense transport of the trace elements load. Moreover, results of the precipitation sensitivity coefficient factor (CF) proved that precipitation effect the occurrence of Li, Sr and U in the Scott River.

Direct link to publication

Publications list of Institute staff

    News

    Date of addition
    6 July 2021

    Follow UMCS: