Instytut Matematyki UMCS

 


 2015


  • Mariusz Plaszczyk, The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2015), 69, no. 1, 91-108.
  • Witold Mozgawa, Mellish theorem for generalized constant width curves, Aequationes Mathematicae (2015), 89, no. 4, 1095-1105.
  • Witold Mozgawa, Extremal Perimeters of Quadrangles in the Poncelet Porism, BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY (2015), 91, no. 3, 487-501.
  • Magdalena Skrzypiec, Differential equations for secantoptics, Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations (2015), 65, no. 1, 91-100.
  • Monika Budzyńska, Tadeusz Kuczumow, The common fixed point set of commuting holomorphice mappings in Cartesian products of Banach spaces, Fixed Point Theory (2015), 16, no. 1, 49-66.
  • Monika Budzyńska, The Denjoy-Wolff iteration property in the unit Hilbert ball, Journal of Nonlinear and Convex Analysis (2015), 16, no. 3, 485-496.
  • Monika Budzyńska, Tadeusz Kuczumow, Limiting behavior of the Kobayashi distance, TAIWANESE JOURNAL OF MATHEMATICS (2015), 19, no. 2, 535-552.
  • Jurij Kozicki, Abel averages and holomorphically pseudo-contractive maps in Banach spaces, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS (2015), 423, no. 2, 1580-1593.
  • Jurij Kozicki, The statistical dynamics of a spatial logistic model and the related kinetic equation, MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES (2015), 25, no. 2, 343-370.
  • Jurij Kozicki, Phase transitions in continuum ferromagnets with unbounded spins, JOURNAL OF MATHEMATICAL PHYSICS (2015), 56, 1-16.
  • Przemysław Matuła, Maciej Ziemba, A note on the large deviation principle for discrete associated random variables, Journal of Probability (2015), 2015, no. 430837, 1-7.
  • Przemysław Matuła, Maciej Ziemba, Covariance and comparison inequalities under quadrant dependence, Periodica Mathematica Hungarica (2015), 71, no. 1, 35-44.
  • Piotr Pawlas, Dominik Szynal, On a characterization of a power distribution, Demonstratio Mathematica (2015), 48, no. 1, 100-106.
  • Mariusz Bieniek, Optimal evaluations for the bias of trimmed means of kth record values, METRIKA (2015), 78, no. 4, 437-460.
  • Beata Bylina, Jarosław Bylina, Strategies of parallelizing nested loops on the multicore architectures on the example of the WZ factorization for the dense matrices, Annals of Computer Science and Information Systems (2015), 5, 629-639.
  • Jarosław Bylina, Stochastic Bounds for Markov Chains with the Use of GPU, Communications in Computer and Information Science (2015), 522, 357-370.
  • Dominik Szałkowski, Przemysław Stpiczyński, Using distributed memory parallel computers and GPU clusters for multidimensional Monte Carlo integration, CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE (2015), 27, no. 4, 923-936.
  • Łukasz Kruk, Marcin Boryc, A multidimensional singular stochastic control problem on a finite time horizon, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2015), 69, no. 1, 23-57.
  • Andrzej Wiśnicki, Hyper-extensions in metric fixed point theory, Journal of Nonlinear and Convex Analysis (2015), 16, no. 3, 539-550.
  • Łukasz Piasecki, Hyperplanes in the space of convergent sequences and preduals of l 1, CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES (2015), 58, no. 3, 459-470.
  • Krzysztof Bolibok, Kazimierz Goebel, Trend constants for Lipschitz mappings, Fixed Point Theory (2015), 16, no. 2, 215-224.
  • Halina Bielak, Closing the gap on path-kipas Ramsey numbers, ELECTRONIC JOURNAL OF COMBINATORICS (2015), 22, no. 3, 1-7.
  • Halina Bielak, Kamil Powroźnik, Statuses and double branch weights of qudrangular outerplanar graphs, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2015), 69, no. 1, 5-21.
  • Halina Bielak, Kamil Powroźnik, The density Turán problem for some 3-uniform unihypercyclic linear hypergraphs. An efficient testing algorithm, Proceedings of the Federated Conference on Computer Science and Information Systems (2015), 5, 563-571.
  • Halina Bielak, Katarzyna Wolska, Kinga Dąbrowska, On the generalized Wiener polarity index for some classes of graphs, Proceedings of the Federated Conference on Computer Science and Information Systems (2015), 5, 483-487.
  • Halina Bielak, Kinga Dąbrowska, The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2015), 69, no. 2, 1-7.
  • Mariusz Bieniek, Optimal bounds on the bias of quasimidranges, Statistics A Journal of Theoretical and Applied Statistics (2015), 49, no. 6, 1382-1399.
  • Agnieszka Tanaś, A continuum individual based model of fragmentation: dynamics of correlation functions, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2015), 69, no. 2, 73-83.

 2014


  • Monika Budzyńska, The Denjoy-Wolff Theorem for condensing mappings in a bounded and strictly convex domain in a complex Banach space, ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA (2014), 39, no. 2, 919-940.
  • Jurij Kozicki, A phase transition in a quenched amorphous ferromagnet, JOURNAL OF STATISTICAL PHYSICS (2014), 156, no. 1, 156-176.
  • Dorota Kępa, Jurij Kozicki, Paths and animals in infinite graphs with tempered degree growth, DISCRETE APPLIED MATHEMATICS (2014), 177, no. 20, 137-145.
  • Jurij Kozicki, Gibbs states on random configurations, JOURNAL OF MATHEMATICAL PHYSICS (2014), 55, no. 8, 1-17.
  • Alina Kargol, Decay of correlations in N-vector ferromagnetic quantum models with long-range interactions, JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT (2014), 2014, no. 10, 1-13.
  • Zdzisław Rychlik, Tomasz Krajka, The limiting bahaviour of sums and maximums of iid random variables from the viewpoint of different observes, Probability and Mathematical Statistics-Poland (2014), 35, no. 2, 237-252.
  • Mariusz Bieniek, Sharp bounds on the bias of trimean, STATISTICAL PAPERS (2014), 56, no. 162, 1-15.
  • Beata Bylina, Jarosław Bylina, Przemysław Stpiczyński, Dominik Szałkowski, Performance Analysis of Multicore and Multinodal Implementation of SpMV Operation, Annals of Computer Science and Information Systems (2014), 2, 569-576.
  • Jerzy Mycka, Recursively enumerable sets and order types of their enumerati, Reports on Mathematical Logic (2014), 49, 79-97.
  • Jerzy Mycka, Monika Piekarz, Hybrid methods as tools for analysis of partition problem, Journal of Applied Mathematics and Engineering (2014), 6, no. 1, 61-80.
  • Kamil Murawski, Krzysztof Murawski, Przemysław Stpiczyński, MPI-GPU/CUDA implementation of TVDLF method for the two-dimensional advection equation, CONTROL AND CYBERNETICS (2014), 43, no. 2, 307-320.
  • Wiesława Kaczor, Net construction of an ergodic nonexpansive retraction onto a fixed point set of asymptotically nonexpansive in the intermediate sense mappings, Journal of Nonlinear and Convex Analysis (2014), 15, no. 2, 411-427.
  • Łukasz Piasecki, Renormings of c0 and the minimal displacement problem, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2014), 68, no. 2, 85-91.
  • Krzysztof Bolibok, The minimal displacement problem in subspaces of the space of continuous functions of finite codimension, STUDIA MATHEMATICA (2014), 225, no. 3, 193-201.
  • Krzysztof Bolibok, Andrzej Wiśnicki, Jacek Wośko, The minimal displacement and extremal spaces, Journal of Nonlinear and Convex Analysis (2014), 15, no. 1, 161-165.
  • Andrzej Wiśnicki, Sławomir Borzdyński, A common fixed point theorem for a commuting family of weak continuous nonexpansive mappings, STUDIA MATHEMATICA (2014), 225, no. 2, 173-181.
  • Andrzej Wiśnicki, Holder continuous retractions and amenable semigroups of uniformly Lipschitzian mappings in Hilbert spaces, Topological Methods in Nonlinear Analysis (2014), 43, no. 1, 89-96.
  • Andrzej Wiśnicki, The fixed point property in direct sums and modulus R(a,X), BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY (2014), 89, no. 1, 79-91.
  • Halina Bielak, Kamil Powroźnik, An efficient algorithm for the density Turán problem of some unicyclic graphs, Proceedings of the 2014 Federated Conference on Computer Science and Information Systems (2014), 2, 479-486.
  • Halina Bielak, Sebastian Kieliszek, The Turán number of the graph 3P4, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2014), 68, no. 1, 21-30.
  • Halina Bielak, Katarzyna Wolska, On the adjacent eccentric distance sum, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2014), 68, no. 2, 1-10.
  • Michał Pańczyk, Halina Bielak, Self-stabilizing algorithm for locating the center of maximal outerplanar graphs, JOURNAL OF UNIVERSAL COMPUTER SCIENCE (2014), 20, no. 14, 1951-1963.

 2013


  • Vasyl Ustymenko, On extremal graph theory and symbolic computations, Dopovidi National Academy of Science, Ukraine (2013), 2, no. 2, 42-49.
  • Vasyl Ustymenko, Aneta Wróblewska, Urszula Romańczuk-Polubiec, Monika Polak, On the applications of Extremal Graph Theory to Coding Theory and Cryptography, Electronic Notes in Discrete Mathematics (2013), 43, 329-342.
  • Vasyl Ustymenko, On K- theory of dynamical systems corresponding to graphs and its Applications, Dopov. Nac. akad. nauk Ukr (2013), 8, 15-21.
  • Anna Betiuk-Pilarska, Stanisław Prus, Banach lattices which are N-order uniformly noncreasy, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS (2013), 339, no. 2, 459-471.
  • Andrzej Kryczka, Mean separations in Banach spaces under abstract interpolation and extrapolation, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS (2013), 407, no. 2, 281-289.
  • Jan Kurek, The natural liftings of connections to tensor powers of the cotangent bundle, Miskolc Mathematical Notes (2013), 14, no. 2, 517-524.
  • Anna Bednarska, On lifts of projectable-projectable classical linear connections to the cotangent bundle, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica (2013), 67, no. 1, 1-10.
  • Witold Mozgawa, On the rotation index of bar billiards and Poncelet's porism, BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN (2013), 20, no. 2, 287-300.
  • Anna Gąsior, Horizontal lifts of some geometric objects to the bundle of pairs of volume forms, Analele Stiintifice ale Universitatii Al I Cuza din Iasi-Serie Noua-Matematica (2013), 59, no. 2, 357-372.
  • Anna Gąsior, Tangent bundles of Hantzsche-Wendt manifolds, JOURNAL OF GEOMETRY AND PHYSICS (2013), 70, 123-129.
  • Monika Budzyńska, Tadeusz Kuczumow, Theorems of Denjoy-Wolff type, ANNALI DI MATEMATICA PURA ED APPLICATA (2013), 192, no. 4, 621-648.
  • Monika Budzyńska, Tadeusz Kuczumow, The Denjoy-Wolff Theorem for compact holomorphic mappings in complex Banach spaces, ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA (2013), 38, no. 2, 747-756.
  • Jurij Kozicki, Glauber dynamics in continuum: a constructive approach to evolution of states, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS (2013), 33, no. 4, 1431-1450.
  • Jurij Kozicki, Power convergence of Abel averages, ARCHIV DER MATHEMATIK (2013), 100, no. 6, 539-549.
  • Jurij Kozicki, Kawasaki dynamics in continuum: micro- and mesoscopic description, Journal of Dynamics and Differential Equations (2013), 25, no. 4, 1027-1056.
  • Jurij Kozicki, On thermodynamic states of the Ising model on scale-free graphs, Condensed Matter Physics (2013), 16, no. 2, 1-12.
  • Jurij Kozicki, Stochastic evolution of a continuum particle system with dispersal and competition: Micro- and mesoscopic description, European Physical Journal-Special Topics (2013), 216, no. 1, 107-116.
  • Mariusz Bieniek, Dominik Szynal, On the bias of estimators based on fractional record values, Journal of Mathematical Sciences (2013), 191, no. 4, 518-525.
  • Anna Betiuk-Pilarska, Andrzej Wiśnicki, On the Suzuki nonexpansive-type mappings, Annals of Functional Analysis (2013), 4, no. 2, 72-86.

  

  • S. Albeverio, Y. Kondratiev, A. Kozak, Y. Kozitsky, A hierarchical model of quantum anharmonic oscillators: critical point convergence, Comm. Math. Phys. 251 (2004), 1-25.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky, Suppression of critical fluctuations by strong quantum effects in quantum lattice systems, Comm. Math. Phys. 194 (1998), 493-512.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky, Classical limits of Euclidean Gibbs states for quantum lattice models, Lett. Math. Phys. 48 (1999), 221-233.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky et al., Uniqueness for Gibbs measures of quantum lattices in small mass regime, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), 43-69.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky et al., Gibbs states of a quantum crystal: uniqueness by small particle mass, C. R. Math. Acad. Sci. Paris 335 (2002), 693-698.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky et al., Euclidean Gibbs states of quantum lattice systems, Rev. Math. Phys. 14 (2002), 1335-1401.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky et al., Small mass implies uniqueness of Gibbs states of a quantum crystal, Comm. Math. Phys. 241 (2003), 69-90.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky et al., The statistical mechanics of quantum lattice systems, European Mathematical Society (EMS), Zürich, 2009.
  • S. Albeverio, Y. Kondratiev, Y. Kozitsky et al., Phase transitions and quantum effects in anharmonic crystals, Internat. J. Modern Phys. B 26 (2012), 1250063, 32.
  • S. Albeverio, Y. G. Kondratiev, Y. Kozitsky, Critical properties of a quantum hierarchical model, Lett. Math. Phys. 40 (1997), 287-291.
  • S. Albeverio, Y. G. Kondratiev, Y. Kozitsky, Absence of critical points for a class of quantum hierarchical models, Comm. Math. Phys. 187 (1997), 1-18.
  • S. Albeverio, Y. G. Kondratiev, Y. Kozitsky, Quantum hierarchical model, Methods Funct. Anal. Topology 2 (1996), 1-35.
  • R. Aulaskari, M. Nowak, R. Zhao, The n-th derivative characterisation of Möbius invariant Dirichlet space, Bull. Austral. Math. Soc. 58 (1998), 43-56.
  • Y. Avcı, E. Złotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1-7 (1991).
  • Y. Avcı, E. Złotkiewicz, An extremal problem for univalent functions, Istanbul Üniv. Fen Fak. Mat. Derg. 50 (1991), 159-164 (1993).
  • Y. Avcı, E. Złotkiewicz, On univalent functions with three preassigned values, Turkish J. Math. 21 (1997), 15-23.
  • Y. Avcı, E. Złotkiewicz, A few remarks on convex mappings, Math. Balkanica (N.S.) 13 (1999), 47-54.
  • Y. Avcı, E. Złotkiewicz, On typically-real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 17-24.
  • M. Avellaneda, R. Buff, C. Friedman et al., Weighted Monte Carlo: a new technique for calibrating asset-pricing models, Applied and industrial mathematics, Venice-2, 1998, (2000), 1-31.
  • M. Avellaneda, R. Buff, C. Friedman et al., Weighted Monte Carlo: a new technique for calibrating asset-pricing models, Int. J. Theor. Appl. Finance 4 (2001), 91-119.
  • M. Avellaneda, R. Buff, C. Friedman et al., Weighted Monte Carlo: a new technique for calibrating asset-pricing models, Quantitative analysis in financial markets, (2001), 239-265.
  • G. Bal, T. Komorowski, L. Ryzhik, Self-averaging of Wigner transforms in random media, Comm. Math. Phys. 242 (2003), 81-135.
  • G. Bal, T. Komorowski, L. Ryzhik, Kinetic limits for waves in a random medium, Kinet. Relat. Models 3 (2010), 529-644.
  • G. Bal, T. Komorowski, L. Ryzhik, Asymptotics of the solutions of the random Schrödinger equation, Arch. Ration. Mech. Anal. 200 (2011), 613-664.
  • J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, Inc., New York, 1980.
  • L. V. Barbulyak, Y. Kozitsky, Integral transformations of functions of a special type and their membership in the class of Laguerre entire functions, Mat. Stud. 3 (1994), 67-77, 121.
  • A. Bator, D. Szynal, On characterizations of the double exponential distribution in terms of moments of order statistics, J. Math. Sci. (N. Y.) 131 (2005), 5580-5594.
  • A. Bator, W. Zięba, On convexity of the space of random elements, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 9-14.
  • A. Bator, W. Zięba, On some definition of expectation of random element in metric space, Ann. Univ. Mariae Curie-Skłodowska Sect. A 63 (2009), 39-48.
  • A. Bator, W. Zięba, Expectation in metric spaces and characterizations of Banach spaces, Demonstratio Math. 42 (2009), 901-908.
  • A. Bednarska, Canonical vector valued 1-forms on higher order adapted frame bundles over category of fibered squares, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 31-36.
  • A. Bednarska, Almost symplectic structures on the linear frame bundle from linear connection, Ann. Univ. Mariae Curie-Skłodowska Sect. A 63 (2009), 49-53.
  • A. Bednarska, Lagrangians and Euler morphisms on fibered-fibered frame bundles from projectable-projectable classical linear connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011), 11-19.
  • A. Bednarska, On lifts of projectable-projectable classical linear connections to the cotangent bundle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2013), 1-10.
  • A. Bednarska, The vertical prolongation of the projectable connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 66 (2012), 1-5.
  • T. D. Benavides, M. A. Japón Pineda, S. Prus, Weak compactness and fixed point property for affine mappings, J. Funct. Anal. 209 (2004), 1-15.
  • L. Benkherouf, V. Ustimenko, Bounds for graphs of given girth and generalized polygons, Algebra Discrete Math. (2002), 1-18.
  • K. Benko, W. Cieślak, S. Góźdź et al., On isoptic curves, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 36 (1990), 47-54.
  • J. Berlińska, P. Stpiczyński, Zastosowanie metod statystycznych do oceny wydajnosci aplikacji rozproszonych, Wspolczesne problemy sieci komputerowych, (2004),
  • C. Berns, Y. Kondratiev, Y. Kozitsky et al., Kawasaki dynamics in continuum: micro- and mesoscopic descriptions, J. Dynam. Differential Equations 25 (2013), 1027-1056.
  • A. Betiuk-Pilarska, Fixed point property for general topologies in Banach lattices, Fixed Point Theory 13 (2012), 23-34.
  • A. Betiuk-Pilarska, S. Phothi, S. Prus, James constant for interpolation spaces, J. Math. Anal. Appl. 382 (2011), 127-131.
  • A. Betiuk-Pilarska, S. Prus, Banach lattices which are order uniformly noncreasy, J. Math. Anal. Appl. 342 (2008), 1271-1279.
  • A. Betiuk-Pilarska, S. Prus, Uniform nonsquareness of direct sums of Banach spaces, Topol. Methods Nonlinear Anal. 34 (2009), 181-186.
  • A. Betiuk-Pilarska, S. Prus, Banach lattices and the fixed point property for direct sums, Fixed point theory and its applications, (2008), 139-150.
  • A. Betiuk-Pilarska, S. Prus, Banach lattices which are N-order uniformly noncreasy, J. Math. Anal. Appl. 399 (2013), 459-471.
  • A. Betiuk-Pilarska, A. Wiśnicki, On the Suzuki nonexpansive-type mappings, Ann. Funct. Anal. 4 (2013), 72-86.
  • H. Bielak, Generalized neighbourhoods and perfectly orderable graphs, Graphs, hypergraphs and matroids, III (Kalsk, 1988), (1989), 7-16.
  • H. Bielak, Graphs with special neighbourhood orderings of vertices, Discrete Math. 121 (1993), 3-9.
  • H. Bielak, Chromatic uniqueness in a family of 2-connected graphs, Discrete Math. 164 (1997), 21-28.
  • H. Bielak, Equivalent classes for K3-gluings of wheels, Discuss. Math. Graph Theory 18 (1998), 73-84.
  • H. Bielak, The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six, Discuss. Math. Graph Theory 18 (1998), 99-111.
  • H. Bielak, Sufficient condition for Hamiltonicity of N2-locally connected claw-free graphs, Discrete Math. 213 (2000), 21-24.
  • H. Bielak, A note on the Ramsey number and the planar Ramsey number for C4 and complete graphs, Discuss. Math. Graph Theory 19 (1999), 135-142.
  • H. Bielak, Roots of chromatic polynomials, Discrete Math. 231 (2001), 97-102.
  • H. Bielak, Local Ramsey numbers for copies of cycles, 6th International Conference on Graph Theory (Marseille, 2000), (2000), 4 pp. (electronic).
  • H. Bielak, Local Ramsey numbers for some graphs, Discrete Math. 266 (2003), 87-99.
  • H. Bielak, Local Ramsey numbers for copies of cycles, Discrete Math. 276 (2004), 29-42.
  • H. Bielak, Local and mean Ramsey numbers for some graphs, Comb01-Euroconference on Combinatorics, Graph Theory and Applications, (2001), 4 pp. (electronic).
  • H. Bielak, Local Ramsey numbers for linear forests, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 1-7.
  • H. Bielak, Ramsey and 2-local Ramsey numbers for disjoint unions of cycles, Discrete Math. 307 (2007), 319-330.
  • H. Bielak, Relations between 2-local and 2-mean Ramsey numbers for graphs, Discrete Math. 307 (2007), 827-831.
  • H. Bielak, Size Ramsey numbers for some regular graphs, Fifth Cracow Conference on Graph Theory USTRON '06, (2006), 39-45 (electronic).
  • H. Bielak, Chromatic properties of Hamiltonian graphs, Discrete Math. 307 (2007), 1245-1254.
  • H. Bielak, The oriented chromatic number of some grids, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 5 (2006), 5-17.
  • H. Bielak, Ramsey numbers for a disjoint union of some graphs, Appl. Math. Lett. 22 (2009), 475-477.
  • H. Bielak, Size Ramsey numbers for some regular graphs, Discrete Math. 309 (2009), 6446-6449.
  • H. Bielak, Multicolor Ramsey numbers for some paths and cycles, Discuss. Math. Graph Theory 29 (2009), 209-218.
  • H. Bielak, A new method for counting chromatic coefficients, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 3 (2005), 179-189.
  • H. Bielak, Ramsey numbers for a disjoint union of good graphs, Discrete Math. 310 (2010), 1501-1505.
  • H. Bielak, On graphs with nonisomorphic 2-neighbourhoods, v Casopis Pv est. Mat. 108 (1983), 294-298.
  • H. Bielak, On j-neighbourhoods in simple graphs, Graphs and other combinatorial topics (Prague, 1982), (1983), 7-11.
  • H. Bielak, Minimal realizations of graphs as central subgraphs, Graphs, hypergraphs and matroids (Zagań, 1985), (1985), 13-24.
  • H. Bielak, Central and peripheral vertices in digraphs, Algebra, combinatorics and logic in computer science, Vol. I, II (GyH or, 1983), (1986), 125-131.
  • H. Bielak, Remarks on the size Ramsey number of graphs, Period. Math. Hungar. 18 (1987), 27-38.
  • H. Bielak, Some remarks about medians in graphs, Graphs, hypergraphs and matroids, II (Zagań, 1986), (1987), 7-15.
  • H. Bielak, On graphs with restricted link graphs and the chromatic number at most 3, v Casopis Pv est. Mat. 113 (1988), 225-231.
  • H. Bielak, I. Gorgol, On size Ramsey numbers for certain hypergraphs, Discuss. Math. 13 (1993), 5-14.
  • H. Bielak, I. Gorgol, The planar Ramsey number for C4 and K5 is 13, Discrete Math. 236 (2001), 43-51.
  • H. Bielak, S. Kieliszek, The Turán number of the graph 3P4, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (2014), 21-29.
  • H. Bielak, M. Pańczyk, A self-stabilizing algorithm for finding weighted centroid in trees, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 12 (2012), 27-37.
  • H. Bielak, M. Pańczyk, A self-stabilizing algorithm for detecting fundamental cycles in a graph with DFS spanning tree given, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 13 (2013), 7-10.
  • H. Bielak, E. Soczewińska, Some remarks about digraphs with nonisomorphic 1- or 2-neighbourhoods, v Casopis Pv est. Mat. 108 (1983), 299-304.
  • H. Bielak, E. Soczewińska, On j-neighbourhoods in digraphs, Graphs and other combinatorial topics (Prague, 1982), (1983), 12-16.
  • H. Bielak, E. Soczewińska, On j-neighbourhoods in digraphs. I, Algebra, combinatorics and logic in computer science, Vol. I, II (GyH or, 1983), (1986), 133-140.
  • H. Bielak, M. M. Sysło, Peripheral vertices in graphs, Studia Sci. Math. Hungar. 18 (1983), 269-275.
  • M. Bieniek, Projection bounds on expectations of generalized order statistics from DFR and DFRA families, Statistics 40 (2006), 339-351.
  • M. Bieniek, Variation diminishing property of densities of uniform generalized order statistics, Metrika 65 (2007), 297-309.
  • M. Bieniek, On characterizations of distributions by regression of adjacent generalized order statistics, Metrika 66 (2007), 233-242.
  • M. Bieniek, Projection bounds on expectations of generalized order statistics from DD and DDA families, J. Statist. Plann. Inference 138 (2008), 971-981.
  • M. Bieniek, Bounds for expectations of differences of generalized order statistics based on general and life distributions, Comm. Statist. Theory Methods 36 (2007), 59-72.
  • M. Bieniek, Projection bounds on expectations of spacings of generalized order statistics from DD and DDA families, Comm. Statist. Theory Methods 36 (2007), 1343-1357.
  • M. Bieniek, Projection bounds on expectations of spacings of generalized order statistics from DFR and DFRA families, Statistics 42 (2008), 231-243.
  • M. Bieniek, On families of distributions for which optimal bounds on expectations of GOS can be derived, Comm. Statist. Theory Methods 37 (2008), 1997-2009.
  • M. Bieniek, A note on characterizations of distributions by regressions of non-adjacent generalized order statistics, Aust. N. Z. J. Stat. 51 (2009), 89-99.
  • M. Bieniek, M. Bieniek, D. Szynal, Bounds on the bias of approximation of fractional record values, Probab. Math. Statist. 25 (2005), 197-210.
  • M. Bieniek, K. Burdzy, S. Finch, Non-extinction of a Fleming-Viot particle model, Probab. Theory Related Fields 153 (2012), 293-332.
  • M. Bieniek, K. Burdzy, S. Pal, Extinction of Fleming-Viot-type particle systems with strong drift, Electron. J. Probab. 17 (2012), no. 11, 15.
  • M. Bieniek, D. Szynal, Limiting distributions of differences and quotients of successive k-th upper and lower record values, Probab. Math. Statist. 20 (2000), 189-202.
  • M. Bieniek, D. Szynal, Limiting distributions of differences between some generalized order statistics, Demonstratio Math. 34 (2001), 305-314.
  • M. Bieniek, D. Szynal, Recurrence relations for distribution functions and moments of k-th record values, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part I (Eger, 2001), (2002), 3511-3519.
  • M. Bieniek, D. Szynal, Characterizations of distributions via linearity of regression of generalized order statistics, Metrika 58 (2003), 259-271.
  • M. Bieniek, D. Szynal, Limit distributions of differences and quotients of non-adjacent k-th record values, Probab. Math. Statist. 23 (2003), 19-38.
  • M. Bieniek, D. Szynal, Characterizations based on k-th upper and lower record values, Demonstratio Math. 37 (2004), 463-473.
  • M. Bieniek, D. Szynal, On the fractional record values, Probab. Math. Statist. 24 (2004), 27-46.
  • M. Bieniek, D. Szynal, On recurrence relations for expectations of functions of some ordered variates, J. Math. Sci. (N. Y.) 131 (2005), 5600-5605.
  • M. Bieniek, D. Szynal, On the bias of estimators based on fractional record values, J. Math. Sci. (N. Y.) 191 (2013), 518-525.
  • O. Blasco, A. Kukuryka, M. Nowak, Luecking's condition for zeros of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 1-15.
  • A. Bobrowski, K. Morawska, From a PDE model to an ODE model of dynamics of synaptic depression, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 2313-2327.
  • K. Bogdan, T. Komorowski, Principal eigenvalue of the fractional Laplacian with a large incompressible drift, NoDEA Nonlinear Differential Equations Appl. 21 (2014), 541-566.
  • K. Bolibok, Constructions of Lipschitzian mappings with non-zero minimal displacement in spaces L1(0,1) and L2(0,1), Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 25-31.
  • K. Bolibok, Minimal displacement and retraction problems in the space l1, Nonlinear Anal. Forum 3 (1998), 13-23.
  • K. Bolibok, Construction of a Lipschitzian retraction in the space c0, Proceedings of Workshop on Fixed Point Theory (Kazimierz Dolny, 1997), (1997), 43-46.
  • K. Bolibok, Minimal displacement and retraction problems in infinite-dimensional Hilbert spaces, Proc. Amer. Math. Soc. 132 (2004), 1103-111 (electronic).
  • K. Bolibok, A remark on the minimal displacement problem in spaces uniformly rotund in every direction, Comment. Math. Univ. Carolin. 44 (2003), 85-90.
  • K. Bolibok, The minimal displacement problem in the space l, Cent. Eur. J. Math. 10 (2012), 2211-2214.
  • K. Bolibok, A note on the minimal displacement problem in spaces Cn[0,1], Fixed point theory and its applications, (2013), 115-122.
  • K. Bolibok, K. Goebel, A note on minimal displacement and retraction problems, J. Math. Anal. Appl. 206 (1997), 308-314.
  • K. Bolibok, K. Goebel, W. A. Kirk, Remarks on the stability of the fixed point property for nonexpansive mappings, Arab. J. Math. (Springer) 1 (2012), 417-430.
  • K. Bolibok, A. Wiśnicki, J. Wośko, The minimal displacement and extremal spaces, J. Nonlinear Convex Anal. 15 (2014), 161-165.
  • M. Boryc, T. Komorowski, Homogenization of random diffusions in non-stationary environments, Asymptot. Anal. 90 (2014), 1-20.
  • Z. Boyd, M. Dorff, M. Nowak et al., Univalency of convolutions of harmonic mappings, Appl. Math. Comput. 234 (2014), 326-332.
  • R. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), 169-179.
  • R. E. Bruck, K. Goebel, Bizarre fixed-point sets, Fixed point theory and applications (Halifax, NS, 1991), (1992), 67-70.
  • M. Brzuszek, P. Stpiczyński, Dense Matrix-Vector and Matrix-Matrix Multiplication on GPU Clusters, Design, development and implementation of real-time systems, (2013), 15-29.
  • M. Budzyńska, An example in holomorphic fixed point theory, Proc. Amer. Math. Soc. 131 (2003), 2771-2777 (electronic).
  • M. Budzyńska, Local uniform linear convexity with respect to the Kobayashi distance, Abstr. Appl. Anal. (2003), 367-373.
  • M. Budzyńska, Domains which are locally uniformly linearly convex in the Kobayashi distance, Abstr. Appl. Anal. (2003), 513-519.
  • M. Budzyńska, Existence of a holomorphic retraction onto a common fixed point set of a family of commuting holomorphic self-mappings of BHn, Nonlinear Anal. 53 (2003), 139-146.
  • M. Budzyńska, Local uniform linear convexity with respect to the Kobayashi distance, Proceedings of the International Conference on Fixed-Point Theory and its Applications, (2003), 367-373.
  • M. Budzyńska, Domains which are locally uniformly linearly convex in the Kobayashi distance, Proceedings of the International Conference on Fixed-Point Theory and its Applications, (2003), 513-519.
  • M. Budzyńska, Holomorphic retracts in domains with the locally uniformly linearly convex Kobayashi distance, Complex analysis and dynamical systems, (2004), 27-34.
  • M. Budzyńska, The Denjoy-Wolff theorem in Cn, Nonlinear Anal. 75 (2012), 22-29.
  • M. Budzyńska, The Denjoy-Wolff theorem for condensing mappings in a bounded and strictly convex domain in a complex Banach space, Ann. Acad. Sci. Fenn. Math. 39 (2014), 919-940.
  • M. Budzyńska, W. Kaczor, M. Koter-Mórgowska, Asymptotic normal structure, semi-Opial property and fixed points, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 33-41.
  • M. Budzyńska, W. Kaczor, M. Koter-Mórgowska et al., Asymptotic normal structure and the semi-Opial property, Proceedings of the Second World Congress of Nonlinear Analysts, Part 6 (Athens, 1996), (1997), 3505-3515.
  • M. Budzyńska, M. A. Khamsi, Holomorphic retracts in BH, J. Math. Anal. Appl. 317 (2006), 707-713.
  • M. Budzyńska, T. Kuczumow, A strict convexity of the Kobayashi distance, Fixed point theory and applications (Chinju/Masan, 2001), (2003), 27-33.
  • M. Budzyńska, T. Kuczumow, A structure of common fixed point sets of commuting holomorphic mappings in finite powers of domains, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 23-33.
  • M. Budzyńska, T. Kuczumow, Common fixed points of holomorphic mappings and retracts of BH, Complex analysis and dynamical systems, (2004), 35-40.
  • M. Budzyńska, T. Kuczumow, Linear strict convexity of the Kobayashi distance in nonreflexive Banach spaces, Fixed point theory and its applications, (2006), 1-9.
  • M. Budzyńska, T. Kuczumow, The common fixed point set of commuting nonexpansive mappings in infinite products of unit balls, Complex analysis and dynamical systems III, (2008), 53-62.
  • M. Budzyńska, T. Kuczumow, M. Michalska, The Γ-Opial property, Bull. Austral. Math. Soc. 73 (2006), 473-476.
  • M. Budzyńska, T. Kuczumow, M. Michalska, The common fixed point set of commuting nonexpansive mappings in Cartesian products of Banach spaces with the Opial property, J. Nonlinear Convex Anal. 15 (2014), 199-209.
  • M. Budzyńska, T. Kuczumow, S. Reich, Uniform asymptotic normal structure, the uniform semi-Opial property, and fixed points of asymptotically regular uniformly Lipschitzian semigroups. II, Abstr. Appl. Anal. 3 (1998), 247-263.
  • M. Budzyńska, T. Kuczumow, S. Reich, A Denjoy-Wolff theorem for compact holomorphic mappings in reflexive Banach spaces, J. Math. Anal. Appl. 396 (2012), 504-512.
  • M. Budzyńska, T. Kuczumow, S. Reich, Theorems of Denjoy-Wolff type, Ann. Mat. Pura Appl. (4) 192 (2013), 621-648.
  • M. Budzyńska, T. Kuczumow, S. Reich, A Denjoy-Wolf theorem for compact holomorphic mappings in complex Banach spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 747-756.
  • M. Budzyńska, T. Kuczumow, S. Reich, Theorems of Denjoy-Wolff type for families of holomorphic retracts, J. Nonlinear Convex Anal. 15 (2014), 637-645.
  • M. Budzyńska, T. Kuczumow, T. Skowski, Total sets and semicontinuity of the Kobayashi distance, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), (2001), 2793-2803.
  • M. Budzyńska, S. Reich, Infinite products of holomorphic mappings, Abstr. Appl. Anal. (2005), 327-341.
  • M. Budzyńska, S. Reich, Intersections of holomorphic retracts in Banach spaces, J. Aust. Math. Soc. 89 (2010), 297-307.
  • C. Burniak, J. Godula, On functions angularly accessible in the direction of the imaginary axis, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 43-51 (1984).
  • B. Bylina, Solving linear systems with vectorized WZ factorization, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 1 (2003), 5-13.
  • B. Bylina, The inverse iteration with the WZ factorization used to the Markovian models, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 2 (2004), 15-23.
  • B. Bylina, J. Bylina, The vectorized and parallelized solving of Markovian models for optical networks, Computational science-ICCS 2004. Part II, (2004), 578-581.
  • B. Bylina, J. Bylina, Markowitz scheme for the sparse WZ factorization, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 6 (2007), 85-94.
  • B. Bylina, J. Bylina, P. Stpiczyński, Blokowo-punktowy rozklad WZ macierzy, Obliczenia naukowe. Wybrane problemy, (2003), 123-130.
  • B. Bylina, J. Bylina, P. Stpiczyński et al., Performance Analysis of Multicore and Multinodal Implementation of SpMV Operation, Proceedings of the Federated Conference on Computer Science and Information Systems, September 7-10, 2014, Warsaw, Poland, (2014), 575-582.
  • J. Bylina, Distributed generation of Markov chains infinitesimal generator matrices for queuing network models, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 2 (2004), 25-29.
  • E. Casini, K. Goebel, Why and how much Brouwer's fixed point theorem fails in noncompact setting?, Milan J. Math. 78 (2010), 371-394.
  • K. Cerebiez-Tarabicka, J. Godula, E. Złotkiewicz, On a class of Bazileviv c functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 45-57 (1981).
  • P. Chaoha, K. Goebel, I. Termwuttipong, Around Ulam's question on retractions, Topol. Methods Nonlinear Anal. 40 (2012), 215-224.
  • T. Chojecki, T. Komorowski, On positivity of the variance of a tracer moving in a divergence-free Gaussian random field, Statist. Probab. Lett. 91 (2014), 98-106.
  • W. Cieślak, H. Martini, W. Mozgawa, On the rotation index of bar billiards and Poncelet's porism, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 287-300.
  • W. Cieślak, A. Miernowski, W. Mozgawa, Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), (1991), 28-35.
  • W. Cieślak, A. Miernowski, W. Mozgawa, Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova 96 (1996), 37-49.
  • W. Cieślak, A. Miernowski, W. Mozgawa, φ-optics and generalized Bianchi-Auerbach equation, J. Geom. Phys. 62 (2012), 2337-2345.
  • W. Cieślak, W. Mozgawa, Euclidean plane foliations, Ann. Univ. Mariae Curie-Skłodowska Sect. A 41 (1987), 1-7 (1989).
  • W. Cieślak, W. Mozgawa, On rosettes and almost rosettes, Geom. Dedicata 24 (1987), 221-228.
  • W. Cieślak, W. Mozgawa, Quelques remarques sur les flots riemanniens singuliers, An. Univ. Timisoara Ser. Stiint. Mat. 25 (1987), 15-20.
  • J. Fé. Costa, B. Loff, J. Mycka, A foundation for real recursive function theory, Ann. Pure Appl. Logic 160 (2009), 255-288.
  • J. Fé. Costa, B. Loff, J. Mycka, The new promise of analog computation, Computation and logic in the real world, (2007), 189-195.
  • E. Csáki, M. Csörgő, Z. Rychlik et al., On Vervaat and Vervaat-error-type processes for partial sums and renewals, J. Statist. Plann. Inference 137 (2007), 953-966.
  • M. Csörgő, Z. Rychlik, Weak convergence of sequences of random elements with random indices, Math. Proc. Cambridge Philos. Soc. 88 (1980), 171-174.
  • M. Csörgő, Z. Rychlik, Asymptotic properties of randomly indexed sequences of random variables, Canad. J. Statist. 9 (1981), 101-107.
  • Sá. Csörgő, Z. Rychlik, Rate of convergence in the strong law of large numbers, Probab. Math. Statist. 5 (1985), 99-111.
  • M. Cudna, T. Komorowski, A finite dimensional approximation of the effective diffusivity for a symmetric random walk in a random environment, J. Comput. Appl. Math. 213 (2008), 186-204.
  • M. Cudna, T. Komorowski, Regularity of the effective diffusivity of random diffusion with respect to anisotropy coefficient, Studia Math. 189 (2008), 269-286.
  • E. B. Czerebak-Mrozowicz, O. I. Klesov, Z. Rychlik, Marcinkiewicz-type strong law of large numbers for pairwise independent random fields, Probab. Math. Statist. 22 (2002), 127-139.
  • I. Ćwiklińska, Z. Rychlik, Weak convergence of random sums and maximum random sums under nonrandom norming, Asymptotic methods in stochastics, (2004), 245-263.
  • A. Daletskii, Y. Kondratiev, Y. Kozitsky et al., A phase transition in a quenched amorphous ferromagnet, J. Stat. Phys. 156 (2014), 156-176.
  • M. Dorff, M. Nowak, Landau's theorem for planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), 151-158.
  • M. Dorff, M. Nowak, W. Szapiel, Typically real harmonic functions, Rocky Mountain J. Math. 42 (2012), 567-581.
  • M. Dorff, M. Nowak, M. Wołoszkiewicz, Harmonic mappings onto parallel slit domains, Ann. Polon. Math. 101 (2011), 149-162.
  • M. Dorff, M. Nowak, M. Wołoszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), 489-503.
  • M. Dorff, R. Viertel, M. Wołoszkiewicz, Convex combinations of minimal graphs, Int. J. Math. Math. Sci. (2012), Art. ID 724268, 9.
  • M. Doupovec, J. Kurek, Liftings of tensor fields to the cotangent bundle, Differential geometry and applications (Brno, 1995), (1996), 141-150.
  • M. Doupovec, J. Kurek, Liftings of covariant (0,2)-tensor fields to the bundle of k-dimensional 1-velocities, The Proceedings of the 15th Winter School ``Geometry and Physics'' (Srni, 1995), (1996), 111-121.
  • M. Doupovec, J. Kurek, Natural operations of Hamiltonian type on the cotangent bundle, The Proceedings of the 16th Winter School ``Geometry and Physics'' (Srni, 1996), (1997), 81-86.
  • M. Doupovec, J. Kurek, Some geometrical constructions with (0,2)-tensor fields on higher order cotangent bundles, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 43-50.
  • M. Doupovec, J. Kurek, Liftings of 1-forms to some non-product preserving bundles, Proceedings of the 17th Winter School ``Geometry and Physics'' (Srni, 1997), (1998), 25-32.
  • M. Doupovec, J. Kurek, Torsions of connections on higher order tangent bundles, Ann. Univ. Mariae Curie-Skłodowska Sect. A 55 (2001), 15-22.
  • M. Doupovec, J. Kurek, Torsions of connections on higher order cotangent bundles, Czechoslovak Math. J. 53(128) (2003), 949-962.
  • D. Dudek, W. Zięba, A note on the strong tightness in C[0,1], Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 27-34.
  • D. Dudek, W. Zięba, On multivalued amarts, Bull. Pol. Acad. Sci. Math. 52 (2004), 93-99.
  • J. M. Dye, T. Kuczumow, P.-K. Lin et al., Random products of nonexpansive mappings in spaces with the Opial property, Banach spaces (Mérida, 1992), (1993), 87-93.
  • J. M. Dye, T. Kuczumow, P.-K. Lin et al., Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property, Nonlinear Anal. 26 (1996), 767-773.
  • J. M. Dye, T. Kuczumow, S. Reich, Random products of contractions, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), (1996), 1541-1548.
  • R. Espínola, A. Wiśnicki, J. Wośko, A geometrical characterization of the C(K) and C0(K) spaces, J. Approx. Theory 105 (2000), 87-101.
  • R. Espínola, A. Wiśnicki, J. Wośko, On a unified study of relative Chebyshev radii and Hausdorff measures of noncompactness, Houston J. Math. 30 (2004), 245-257 (electronic).
  • Z. Füredi, F. Lazebnik, Á. Seress, V. Ustimenko, A. Woldar, Graphs of prescribed girth and bi-degree, J. Combin. Theory Ser. B 64 (1995), 228-239.
  • M. Fait, E. Złotkiewicz, Convex hulls of some classes of univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 30 (1976), 35-41 (1978).
  • M. Fait, E. Złotkiewicz, A variational method for Grunsky functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 34 (1980), 9-18 (1983).
  • A. Fannjiang, T. Komorowski, A martingale approach to homogenization of unbounded random flows, Ann. Probab. 25 (1997), 1872-1894.
  • A. Fannjiang, T. Komorowski, An invariance principle for diffusion in turbulence, Ann. Probab. 27 (1999), 751-781.
  • A. Fannjiang, T. Komorowski, Turbulent diffusion in Markovian flows, Ann. Appl. Probab. 9 (1999), 591-610.
  • A. Fannjiang, T. Komorowski, Limit theorems for motions in a flow with a nonzero drift, Bull. Polish Acad. Sci. Math. 47 (1999), 393-413.
  • A. Fannjiang, T. Komorowski, Fractional Brownian motions and enhanced diffusion in a unidirectional wave-like turbulence, J. Statist. Phys. 100 (2000), 1071-1095.
  • A. Fannjiang, T. Komorowski, Fractional Brownian motions in a limit of turbulent transport, Ann. Appl. Probab. 10 (2000), 1100-1120.
  • A. Fannjiang, T. Komorowski, Invariance principle for a diffusion in a Markov field, Bull. Polish Acad. Sci. Math. 49 (2001), 45-65.
  • A. Fannjiang, T. Komorowski, Diffusive and nondiffusive limits of transport in nonmixing flows, SIAM J. Appl. Math. 62 (2001/02), 909-923 (electronic).
  • A. Fannjiang, T. Komorowski, Diffusion in long-range correlated Ornstein-Uhlenbeck flows, Electron. J. Probab. 7 (2002), no. 20, 22 pp. (electronic).
  • A. Fannjiang, T. Komorowski, Frozen path approximation for turbulent diffusion and fractional Brownian motion in random flows, SIAM J. Appl. Math. 63 (2003), 2042-2062 (electronic).
  • A. Fannjiang, T. Komorowski, S. Peszat, Lagrangian dynamics for a passive tracer in a class of Gaussian Markovian flows, Stochastic Process. Appl. 97 (2002), 171-198.
  • A. C. Fannjiang, T. Komorowski, Diffusion approximation for particle convection in Markovian flows, Bull. Polish Acad. Sci. Math. 48 (2000), 253-275.
  • A. C. Fannjiang, T. Komorowski, Correction: ``An invariance principle for diffusion in turbulence'' [Ann. Probab. 27 (1999), no. 2, 751-781; MR1698963 (2001e:60069)], Ann. Probab. 30 (2002), 480-482.
  • I. Fazekas, Z. Rychlik, Almost sure functional limit theorems, Ann. Univ. Mariae Curie-Skłodowska Sect. A 56 (2002), 1-18.
  • I. Fazekas, Z. Rychlik, Almost sure central limit theorems for random fields, Math. Nachr. 259 (2003), 12-18.
  • I. Fazekas, Z. Rychlik, Almost sure limit theorems for semi-selfsimilar processes, Probab. Math. Statist. 25 (2005), 241-255.
  • D. Finkelshtein, Y. Kondratiev, Y. Kozitsky, Glauber dynamics in continuum: a constructive approach to evolution of states, Discrete Contin. Dyn. Syst. 33 (2013), 1431-1450.
  • P. R. de Fitte, W. Zięba, On the construction of a stable sequence with given density, Ann. Univ. Mariae Curie-Skłodowska Sect. A 56 (2002), 77-84.
  • V. Futorny, V. Ustimenko, On small world semiplanes with generalised Schubert cells, Acta Appl. Math. 98 (2007), 47-61.
  • S. Góźdź, A. Miernowski, W. Mozgawa, Sine theorem for rosettes, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 44 (1998), 385-394 (2000).
  • A. Gąsior, A generalized Möbius vector bundle over a projective space, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 49 (2003), 369-374 (2004).
  • A. Gąsior, Horizontal lift of symmetric connections to the bundle of volume forms V, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (2010), 45-61.
  • A. Gąsior, Horizontal lifts of some geometric objects to the bundle of pairs of volume forms, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 59 (2013), 357-372.
  • A. Gąsior, A. Szczepański, Tangent bundles of Hantzsche-Wendt manifolds, J. Geom. Phys. 70 (2013), 123-129.
  • A. Gąsior, Curvatures for horizontal lift of a Riemannian metric, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 17-21.
  • A. Gąsior, A. Szczepański, Flat manifolds with holonomy group Z2k of diagonal type, Osaka J. Math. 51 (2014), 1015-1025.
  • I. Gajowiak, Z. Rychlik, Weak convergence of randomly indexed sequences of random variables, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part II (Nalpolhk eczow, 1999), (2001), 2657-2664.
  • A. Ganczar, On harmonic univalent mappings with small coefficients, Demonstratio Math. 34 (2001), 549-558.
  • A. Ganczar, Multivalent α-convex harmonic mappings, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. (2002), 3-13.
  • A. Ganczar, An extremal problem for harmonic self-mappings of the unit disk, J. Math. Anal. Appl. 329 (2007), 46-50.
  • A. Ganczar, Explicit quasiconformal extensions of planar harmonic mappings, J. Comput. Anal. Appl. 10 (2008), 179-186.
  • A. Ganczar, M. Michalska, J. Szynal, On the Landau problem for bounded nonvanishing functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 37-46.
  • A. Ganczar, M. Michalska, J. Szynal, The conjecture parallel to the Krzyż conjecture, Demonstratio Math. 36 (2003), 65-75.
  • A. Ganczar, D. V. Prokhorov, J. Szynal, A coefficient product estimate for bounded univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 54 (2000), 27-44.
  • A. Ganczar, J. Widomski, Univalent harmonic mappings into two-slit domains, J. Aust. Math. Soc. 88 (2010), 61-73.
  • J. García Falset, W. Kaczor, T. Kuczumow et al., Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 43 (2001), 377-401.
  • V. Pérez García, Ł. Piasecki, Lipschitz constants for iterates of mean Lipschitzian mappings, Nonlinear Anal. 74 (2011), 5643-5647.
  • J. García-Falset, E. Llorens-Fuster, S. Prus, The fixed point property for mappings admitting a center, Nonlinear Anal. 66 (2007), 1257-1274.
  • D. Girela, M. Nowak, P. Waniurski, On the zeros of Bloch functions, Math. Proc. Cambridge Philos. Soc. 129 (2000), 117-128.
  • J. Godula, Integral means of holomorphic functions in the unit ball, Proceedings of the Fourth Finnish-Polish Summer School in Complex Analysis at Jyväskylä (1992), (1993), 19-24.
  • J. Godula, Integral means of derivatives of functions on the unit ball, Zeszyty Nauk. Politech. Rzeszowskiej Mat. (1994), 27-30.
  • J. Godula, Gp(α)-norm of the convolution of functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. (1994), 31-34.
  • J. Godula, Generalized Hankel operators on the Bergman space on the unit ball, Complex Variables Theory Appl. 34 (1997), 343-350.
  • J. Godula, Linearly invariant families, Bloch functions and uniformly perfect sets, Complex Var. Elliptic Equ. 57 (2012), 1087-1095.
  • J. Godula, On univalence of a certain integral, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 69-76 (1981).
  • J. Godula, Some remarks on Bazileviv c functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 34 (1980), 47-50 (1983).
  • J. Godula, A class of functions defined in a ring, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1984), 73-78.
  • J. Godula, The Koebe set for the class of meromorphic and univalent functions with Montel's normalization, Rend. Circ. Mat. Palermo (2) 35 (1986), 112-117.
  • J. Godula, J. Janowski, On some classes of regular univalent functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1986), 5-12.
  • J. Godula, D. Krawczyk, S. Ponnusamy, On the convexity and starlikeness of certain integrals, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1988), 29-34.
  • J. Godula, P. Liczberski, V. V. Starkov, Order of linearly invariant family of mappings in Cn, Complex Variables Theory Appl. 42 (2000), 89-96.
  • J. Godula, M. Nowak, On integral means of the convolution, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 9-11 (1991).
  • J. Godula, M. Nowak, Integral means of univalent functions with Montel's normalization, Mathematica (Cluj) 28(51) (1986), 117-123.
  • J. Godula, M. Nowak, Meromorphic univalent functions in an annulus, Rend. Circ. Mat. Palermo (2) 36 (1987), 474-481 (1988).
  • J. Godula, M. Nowak, Integral means of α-strongly starlike functions, Complex analysis, Joensuu 1987, (1988), 140-145.
  • J. Godula, J. Stankiewicz, On one property of functions with positive real part in a ring, Demonstratio Math. 19 (1986), 421-430.
  • J. Godula, V. Starkov, On Jakubowski functional in Uα*, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1989), 37-43.
  • J. Godula, V. Starkov, On the Jakubowski's functional in a linearly invariant family, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1990), 19-27.
  • J. Godula, V. Starkov, Estimates of constants connected with linearly invariant families of functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 43-51.
  • J. Godula, V. Starkov, Applications of the idea of Möbius invariance to obtain equivalent definitions of Bloch function, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 41-58.
  • J. Godula, V. Starkov, Erratum to: ``Estimates of constants connected with linearly invariant families of functions'' [Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 43-51; MR1346561 (96e:30044)], Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 213.
  • J. Godula, V. Starkov, On Bloch functions and univalence of the integral of (h')λ, XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995), (1996), 31-37.
  • J. Godula, V. Starkov, Linearly invariant families of holomorphic functions in the unit polydisc, Generalizations of complex analysis and their applications in physics (Warsaw/Rynia, 1994), (1996), 115-127.
  • J. Godula, V. Starkov, On some properties of means of Bloch functions, Geometric theory of functions, boundary value problems and their applications (Russian) (Kazanrime, 2002), (2002), 351-359.
  • J. Godula, V. Starkov, Universal linearly invariant families and Bloch functions in the unit ball, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 45-58.
  • J. Godula, V. V. Starkov, On regularity theorems for linearly invariant families of analytic functions in the unit polydisk. II, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 15-24.
  • J. Godula, V. V. Starkov, On regularity theorems for linearly invariant families of analytic functions in the unit polydisk, Computational methods and function theory 1997 (Nicosia), (1999), 241-257.
  • J. Godula, V. V. Starkov, On the boundary behaviour of functions of several complex variables, Ann. Univ. Mariae Curie-Skłodowska Sect. A 56 (2002), 31-45.
  • J. Godula, V. Starkow, Logarithmic coefficients of locally univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 9-13 (1991).
  • J. Godula, P. Lichberskiuı, V. V. Starkov, Linearly invariant families of mappings of a ball in CN, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. (1999), 3-14.
  • J. Godula, V. V. Starkov, A regularity theorem for linearly invariant families of functions in a polydisk, Izv. Vyssh. Uchebn. Zaved. Mat. (1995), 21-33.
  • J. Godula, V. V. Starkov, Linearly invariant families of functions that are analytic in a polydisk, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. (1995), 11-18.
  • J. Godula, V. V. Starkov, Univalence of integrals of (f')λ, and Bloch functions [ MR1427068 (98c:30043)], Tr. Petrozavodsk. Gos. Univ. Ser. Mat. (1996), 28-36.
  • J. Godula, V. V. Starkov, Linear-invariant families of harmonic locally quasiconformal mappings, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. (1997), 50-61.
  • J. Godula, V. V. Starkov, On the accuracy of certain Campbell and Pommerenke estimates, Mat. Zametki 63 (1998), 665-672.
  • J. Godula, V. V. Starkov, On a regularity theorem for linearly invariant families of functions in the polydisk, Izv. Vyssh. Uchebn. Zaved. Mat. (1999), 75-79.
  • J. Godula, V. V. Starkov, Boundary behavior in the Stolz angle of functions analytic in the disk, Mat. Zametki 71 (2002), 652-661.
  • J. Godula, V. V. Starkov, Remarks on the boundary behavior of Bloch functions, Izv. Vyssh. Uchebn. Zaved. Mat. (2005), 30-37.
  • K. Goebel, On strong contraction, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 309-312.
  • K. Goebel, On the spaces of strong contractions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 313-316.
  • K. Goebel, On a property of Lipschitzian transformations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 27-28.
  • K. Goebel, On the θ-contractions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 611-613.
  • K. Goebel, On the minimal Lipschitz constant, Canad. Math. Bull. 11 (1968), 141-143.
  • K. Goebel, An elementary proof of the fixed-point theorem of Browder and Kirk. , Michigan Math. J. 16 (1969), 381-383.
  • K. Goebel, Convexivity of balls and fixed-point theorems for mappings with nonexpansive square, Compositio Math. 22 (1970), 269-274.
  • K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 733-735.
  • K. Goebel, On the minimal displacement of points under Lipschitzian mappings, Pacific J. Math. 45 (1973), 151-163.
  • K. Goebel, On a fixed point theorem for multivalued nonexpansive mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 29 (1975), 69-72 (1977).
  • K. Goebel, On the structure of minimal invariant sets for nonexpansive mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 29 (1975), 73-77 (1977).
  • K. Goebel, On some fixed points theorems for Lipschitzian mappings, Proceedings of the Conference on Differential Equations and their Applications (Univ. Iasi, Iasi, 1973), (1977), 13-15.
  • K. Goebel, On a problem concerning involutions of Banach spaces, Optimization and nonlinear analysis (Haifa, 1990), (1992), 142-144.
  • K. Goebel, Properties of minimal invariant sets for nonexpansive mappings, Topol. Methods Nonlinear Anal. 12 (1998), 367-373.
  • K. Goebel, On minimal displacement problem and retractions of balls onto spheres, Taiwanese J. Math. 5 (2001), 193-206.
  • K. Goebel, A way to retract balls onto spheres, J. Nonlinear Convex Anal. 2 (2001), 47-51.
  • K. Goebel, Metric environment of the topological fixed point theorems, Handbook of metric fixed point theory, (2001), 577-611.
  • K. Goebel, On the problem of retracting balls onto their boundary, Abstr. Appl. Anal. (2003), 101-110.
  • K. Goebel, Concise course on fixed point theorems, Yokohama Publishers, Yokohama, 2002.
  • K. Goebel, On the problem of retracting balls onto their boundary [refcno 1960141], Proceedings of the International Conference on Fixed-Point Theory and its Applications, (2003), 101-110.
  • K. Goebel, An elementary example of the retraction of a ball onto sphere, Nonlinear analysis and convex analysis, (2007), 111-113.
  • K. Goebel, Examples for an old problem on commuting mappings, Fixed point theory and its applications, (2010), 71-75.
  • K. Goebel, An example in nonexpansive mappings theory, Nonlinear analysis and convex analysis, (2009), 45-47.
  • K. Goebel, Problems I left behind, Fixed point theory and its applications, (2013), 9-20.
  • K. Goebel, Uniform convexity of Carathéodory's metric on the Hilbert ball and its consequences, Symposia Mathematica, Vol. XXVI (Rome, 1980), (1982), 163-179.
  • K. Goebel, Fixed points and invariant domains of holomorphic mappings of the Hilbert ball, Nonlinear Anal. 6 (1982), 1327-1334.
  • K. Goebel, L. Zur, Some remarks concerning of uniqueness conditions of Lipschitz type, Ann. Univ. Mariae Curie-Skłodowska Sect. A 25 (1971), 27-32 (1973).
  • K. Goebel, M. A. Japón Pineda, On a type of generalized nonexpansiveness, Fixed point theory and its applications, (2008), 71-82.
  • K. Goebel, W. Kaczor, Remarks on failure of Schauder's theorem in noncompact settings, Proceedings of Workshop on Fixed Point Theory (Kazimierz Dolny, 1997), (1997), 99-108.
  • K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
  • K. Goebel, W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135-140.
  • K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990.
  • K. Goebel, W. A. Kirk, Classical theory of nonexpansive mappings, Handbook of metric fixed point theory, (2001), 49-91.
  • K. Goebel, W. A. Kirk, Some problems in metric fixed point theory, J. Fixed Point Theory Appl. 4 (2008), 13-25.
  • K. Goebel, W. A. Kirk, Iteration processes for nonexpansive mappings, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982), (1983), 115-123.
  • K. Goebel, W. A. Kirk, T. N. Shimi, A fixed point theorem in uniformly convex spaces, Boll. Un. Mat. Ital. (4) 7 (1973), 67-75.
  • K. Goebel, W. A. Kirk, R. L. Thele, Uniformly Lipschitzian families of transformations in Banach spaces, Canad. J. Math. 26 (1974), 1245-1256.
  • K. Goebel, T. Komorowski, Retracting balls onto spheres and minimal displacement problem, Fixed point theory and applications (Marseille, 1989), (1991), 155-172.
  • K. Goebel, M. Koter, Regularly nonexpansive mappings, An. Stiint. Univ. ``Al. I. Cuza'' Iasi Sect. I a Mat. (N.S.) 24 (1978), 265-269.
  • K. Goebel, M. Koter, A remark on nonexpansive mappings, Canad. Math. Bull. 24 (1981), 113-115.
  • K. Goebel, M. Koter, Fixed points of rotative Lipschitzian mappings, Rend. Sem. Mat. Fis. Milano 51 (1981), 145-156 (1983).
  • K. Goebel, M. Koter-Mórgowska, Rotative mappings in metric fixed point theory, Nonlinear analysis and convex analysis (Niigata, 1998), (1999), 150-156.
  • K. Goebel, T. Kuczumow, Irregular convex sets with fixed-point property for nonexpansive mappings, Colloq. Math. 40 (1978/79), 259-264.
  • K. Goebel, T. Kuczumow, A contribution to the theory of nonexpansive mappings, Bull. Calcutta Math. Soc. 70 (1978), 355-357.
  • K. Goebel, G. Marino, A note on minimal displacement and optimal retraction problems, Fixed point theory and its applications, (2006), 95-107.
  • K. Goebel, G. Marino, L. Muglia et al., The retraction constant and the minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), 735-744.
  • K. Goebel, S. Massa, Some remarks on nonexpansive mappings in Hilbert spaces, Boll. Un. Mat. Ital. A (6) 3 (1984), 139-145.
  • K. Goebel, Ł. Piasecki, A new estimate for the optimal retraction constant, Banach and function spaces II, (2008), 77-83.
  • K. Goebel, S. Reich, Iterating holomorphic self-mappings of the Hilbert ball, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 349-352.
  • K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, Inc., New York, 1984.
  • K. Goebel, W. Rzymowski, An existence theorem for the equation x' =f(t,x) in Banach space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 367-370.
  • K. Goebel, W. Rzymowski, An equation f(x)=kx possessing no solutions, Proc. Amer. Math. Soc. 51 (1975), 322.
  • K. Goebel, E. Sędłak, Nonexpansive retractions in Hilbert spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A 63 (2009), 83-90.
  • K. Goebel, T. Sękowski, The modulus of noncompact convexity, Ann. Univ. Mariae Curie-Skłodowska Sect. A 38 (1984), 41-48 (1986).
  • K. Goebel, R. Schöneberg, Moons, bridges, birds... and nonexpansive mappings in Hilbert space, Bull. Austral. Math. Soc. 17 (1977), 463-466.
  • K. Goebel, T. Sękowski, A. Stachura, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Anal. 4 (1980), 1011-1021.
  • K. Goebel, B. Sims, More on minimal invariant sets for nonexpansive mappings, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), (2001), 2667-2681.
  • K. Goebel, B. Sims, Mean Lipschitzian mappings, Nonlinear analysis and optimization I. Nonlinear analysis, (2010), 157-167.
  • K. Goebel, M. Szczepanik, A problem concerning mappings with constant displacement, Sūrikaisekikenkyūsho Kōkyūroku (2002), 135-140.
  • K. Goebel, W. Takahashi, A note on mappings with nonexpansive square, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 59-67.
  • K. Goebel, J. Wośko, Making a hole in the space, Proc. Amer. Math. Soc. 114 (1992), 475-476.
  • K. Goebel, E. Złotkiewicz, Some fixed point theorems in Banach spaces, Colloq. Math. 23 (1971), 103-106, 176.
  • M. Gregorczyk, J. Widomski, Harmonic mappings in the exterior of the unit disk, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (2010), 63-73.
  • A. Grigoryan, M. Nowak, Integral means of harmonic mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 25-34.
  • A. Grigoryan, M. Nowak, Estimates of integral means of harmonic mappings, Complex Variables Theory Appl. 42 (2000), 151-161.
  • Z. Grodzki, J. Mycka, The equivalence of some classes of algorithms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 85-99.
  • Z. Grodzki, J. Mycka, Two-dimensional Markov-like algorithms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 51-64.
  • Z. Grodzki, J. Mycka, The new classes of Markov-like k-algorithms, Rep. Math. Logic (1996), 83-99 (1997).
  • Z. Grodzki, J. Mycka, n-dimensional Markov-like algorithms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 55 (2001), 39-52.
  • H. C. Gromoll, Ł. Kruk, Heavy traffic limit for a processor sharing queue with soft deadlines, Ann. Appl. Probab. 17 (2007), 1049-1101.
  • H. C. Gromoll, Ł. Kruk, A. L. Puha, Diffusion limits for shortest remaining processing time queues, Stoch. Syst. 1 (2011), 1-16.
  • L. E. Gruszecki, Z. Rychlik, Inequalities for conditioned normal approximations, Demonstratio Math. 21 (1988), 431-440.
  • W. Grzenda, D. Majerek, W. Zięba, Comments to the paper: ``On uniform integrability of random variables'' [Statist. Probab. Lett. 74 (2005), no. 3, 272-280; refcno 2189466], Statist. Probab. Lett. 77 (2007), 1644-1646.
  • W. Grzenda, W. Zięba, Conditional central limit theorem, Int. Math. Forum 3 (2008), 1521-1528.
  • S. Gutkowska, W. Zięba, On a stability in Renyi's sense, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 61-65.
  • J. Hemmeter, V. Ustimenko, A. Woldar, Orbital schemes of B3(q) acting on 2-dimensional totally isotropic subspaces, European J. Combin. 19 (1998), 487-498.
  • R. Hołubowicz, W. Mozgawa, An example of a non-Sasakian five-dimensional contact manifold, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 71-75.
  • R. Hołubowicz, W. Mozgawa, On compact non-Kählerian manifolds admitting an almost Kähler structure, Proceedings of the 17th Winter School ``Geometry and Physics'' (Srni, 1997), (1998), 53-57.
  • R. Hołubowicz, W. Mozgawa, Nonisometric transversely parallelisable foliations on four-dimensional toral bundles, Bull. Soc. Sci. Lett. Ł ódź 38 (1988), 8.
  • P. Horvai, T. Komorowski, J. Wehr, Finite time approach to equilibrium in a fractional Brownian velocity field, J. Stat. Phys. 127 (2007), 553-565.
  • A. A. Ivanov, M. E. Muzichuk, V. A. Ustimenko, On a new family of (P and Q)-polynomial schemes, European J. Combin. 10 (1989), 337-345.
  • G. Iyer, T. Komorowski, A. Novikov et al., From homogenization to averaging in cellular flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 957-983.
  • R. Janicka, W. Kaczor, On the construction of some measures of noncompactness, Ann. Univ. Mariae Curie-Skłodowska Sect. A 30 (1976), 49-56 (1978).
  • M. A. Japón Pineda, S. Prus, Fixed point property for general topologies in some Banach spaces, Bull. Austral. Math. Soc. 70 (2004), 229-244.
  • M. Jara, T. Komorowski, Limit theorems for some continuous-time random walks, Adv. in Appl. Probab. 43 (2011), 782-813.
  • M. Jara, T. Komorowski, S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. Appl. Probab. 19 (2009), 2270-2300.
  • D. Kępa-Maksymowicz, Y. Kozitsky, Paths and animals in infinite graphs with tempered degree growth, Discrete Appl. Math. 177 (2014), 137-145.
  • D. Kępa, Y. Kozitsky, Uniqueness of Gibbs states of a quantum system on graphs, Rep. Math. Phys. 59 (2007), 281-288.
  • W. Kaczor, Measures of noncompactness and an existence theorem for differential equations in Banach spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A 42 (1988), 35-40.
  • W. Kaczor, Some remarks about uniformly Lipschitzian mappings and Lipschitzian retractions, Taiwanese J. Math. 5 (2001), 323-330.
  • W. Kaczor, Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups, J. Math. Anal. Appl. 272 (2002), 565-574.
  • W. Kaczor, Fixed points of asymptotically regular nonexpansive mappings on nonconvex sets, Abstr. Appl. Anal. (2003), 83-91.
  • W. Kaczor, Fixed points of λ-firmly nonexpansive mappings on nonconvex sets, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), (2001), 2787-2792.
  • W. Kaczor, Fixed points of asymptotically regular nonexpansive mappings on nonconvex sets [MR1960139], Proceedings of the International Conference on Fixed-Point Theory and its Applications, (2003), 83-91.
  • W. Kaczor, A nonstandard proof of a generalized demiclosedness principle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 43-50.
  • W. Kaczor, The measure of noncompactness, and differential equations in Banach spaces, Bol. Mat. 20 (1986), 1-13.
  • W. Kaczor, M. Koter-Mórgowska, Firmly Lipschitzian mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 77-85.
  • W. Kaczor, M. Koter-Mórgowska, Rotative mappings and mappings with constant displacement, Handbook of metric fixed point theory, (2001), 323-337.
  • W. Kaczor, M. Koter-Mórgowska, T. Kuczumow, Fixed point theorems for uniformly Lipschitzian mappings on unbounded sets, Math. Japon. 52 (2000), 241-246.
  • W. Kaczor, T. Kuczumow, A remark on a lemma due to Oka, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 67-70.
  • W. Kaczor, T. Kuczumow, M. Michalska, Convergence of ergodic means of orbits of semigroups of nonexpansive mappings in sets with the Γ-Opial property, Nonlinear Anal. 67 (2007), 2122-2130.
  • W. Kaczor, T. Kuczumow, M. Michalska, The common fixed point set of commuting nonexpansive mappings in Cartesian products of weakly compact convex sets, Nonlinear analysis and optimization I. Nonlinear analysis, (2010), 181-191.
  • W. Kaczor, T. Kuczumow, S. Reich, A mean ergodic theorem for nonlinear semigroups which are asymptotically nonexpansive in the intermediate sense, J. Math. Anal. Appl. 246 (2000), 1-27.
  • W. Kaczor, T. Kuczumow, S. Reich, A mean ergodic theorem for mappings which are asymptotically nonexpansive in the intermediate sense, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), (2001), 2731-2742.
  • W. Kaczor, T. Kuczumow, W. Zygmunt, Adam Bielecki (1910-2003), Wiadom. Mat. 40 (2004), 213-228.
  • W. Kaczor, S. Prus, Asymptotical smoothness and its applications, Bull. Austral. Math. Soc. 66 (2002), 405-418.
  • W. Kaczor, S. Prus, Fixed point properties of some sets in l1, International Conference on Fixed Point Theory and Applications, (2004), 95-112.
  • W. Kaczor, S. Reich, Ergodic retractions for semigroups in strictly convex Banach spaces, Taiwanese J. Math. 15 (2011), 1447-1456.
  • W. Kaczor, T. Skowski, Weak convergence of iteration processes for nonexpansive mappings and nonexpansive semigroups, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 71-77.
  • W. Kaczor, A. Stachura, J. Walczuk et al., Measures of noncompactness in ultraproducts, Bull. Aust. Math. Soc. 80 (2009), 165-172.
  • W. Kaczor, J. Walczuk, Demiclosedness principle and approximate fixed point sequences for asymptotically nonexpansive in the intermediate sense mappings, Fixed point theory and its applications, (2006), 109-123.
  • W. Kaczor, J. Walczuk, Net construction of an ergodic nonexpansive retraction onto a fixed point set of asymptotically nonexpansive in the intermediate sense mappings, J. Nonlinear Convex Anal. 15 (2014), 411-427.
  • W. Kaczor, W. Zygmunt, On differential inclusions with an advanced argument, Ann. Univ. Mariae Curie-Skłodowska Sect. A 46 (1992), 33-42.
  • W. J. Kaczor, M. T. Nowak, Problems in mathematical analysis. II, American Mathematical Society, Providence, RI, 2001.
  • L. A. Kalužnin, V. Ī. Suščanskrimekiuı, V. A. Ustimenko-Bakumovskiuı, Operation of exponentiation in the theory of permutation groups and its applications, Sixth All-Union Symposium on Group Theory ( Cerkassy, 1978) (Russian), (1980), 135-146, 222.
  • A. A. Kaluzhnin, V. Ī. Sushchansrimekiuı, V. A. Ustimenko, Application of electronic computers in the theory of substitution groups and its applications, Cybernetics (1982), 83-94.
  • J. Kapeluszny, Some remarks on a fixed point property for multivalued mapping, J. Math. Appl. 32 (2010), 47-52.
  • J. Kapeluszny, T. Kuczumow, A few properties of the Kobayashi distance and their applications, Topol. Methods Nonlinear Anal. 15 (2000), 169-177.
  • J. Kapeluszny, T. Kuczumow, S. Reich, The Denjoy-Wolff theorem in the open unit ball of a strictly convex Banach space, Adv. Math. 143 (1999), 111-123.
  • J. Kapeluszny, T. Kuczumow, S. Reich, The Denjoy-Wolff theorem for condensing holomorphic mappings, J. Funct. Anal. 167 (1999), 79-93.
  • A. Kargol, Decay of correlations in multicomponent ferromagnets with long-range interaction, Rep. Math. Phys. 56 (2005), 379-386.
  • A. Kargol, Y. Kondratiev, Y. Kozitsky, Phase transitions and quantum stabilization in quantum anharmonic crystals, Rev. Math. Phys. 20 (2008), 529-595.
  • A. Kargol, Y. Kozitsky, A phase transition in a quantum crystal with asymmetric potentials, Lett. Math. Phys. 79 (2007), 279-294.
  • R. Kartaszyński, P. Stpiczyński, OpenMP parser for Ada, Annales UMCS Informatica 2 (2004), 47-57.
  • R. Kartaszyński, P. Stpiczyński, Professionally designed and developed OpenMP parser for the Ada programming language using flex, Annales UMCS Informatica 4 (2006), 47-57.
  • M. Karwacki, P. Stpiczyński, Improving Performance of Triangular Matrix-Vector BLAS Routines on GPUs, IOS Press, (2012), 405-412.
  • O. Klesov, Z. Rychlik, J. Steinebach, Strong limit theorems for general renewal processes, Probab. Math. Statist. 21 (2001), 329-349.
  • M. Klisowski, U. Romańczuk, V. Ustimenko, The implementation of cubic public keys based on a new family of algebraic graphs, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 11 (2011), 127-141.
  • M. Klisowski, V. Ustimenko, On the implementation of public key algorithm based on graphs and their symmetries, Albanian J. Math. 5 (2011), 139-149.
  • M. Klisowski, V. Ustimenko, On the comparison of cryptographical properties of two different families of graphs with large cycle indicator, Math. Comput. Sci. 6 (2012), 181-198.
  • I. Kolář, Z. Radziszewski, Natural transformations of second tangent and cotangent functors, Czechoslovak Math. J. 38(113) (1988), 274-279.
  • T. Komorowski, Piecewise convex transformations with no finite invariant measure, Ann. Polon. Math. 54 (1991), 59-68.
  • T. Komorowski, Asymptotic periodicity of some stochastically perturbed dynamical systems, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), 165-178.
  • T. Komorowski, Diffusion approximation for the advection of particles in a strongly turbulent random environment, Ann. Probab. 24 (1996), 346-376.
  • T. Komorowski, The parametrix method approach to diffusions in a turbulent Gaussian environment, Stochastic Process. Appl. 74 (1998), 165-193.
  • T. Komorowski, Brownian motion in a Poisson obstacle field, Astérisque (2000), Exp. No. 853, 3, 91-111.
  • T. Komorowski, An abstract Lagrangian process related to convection-diffusion of a passive tracer in a Markovian flow, Bull. Polish Acad. Sci. Math. 48 (2000), 413-427.
  • T. Komorowski, Diffusion approximation for the convection-diffusion equation with random drift, Probab. Theory Related Fields 121 (2001), 525-550.
  • T. Komorowski, Stationarity of Lagrangian velocity in compressible environments, Comm. Math. Phys. 228 (2002), 417-434.
  • T. Komorowski, An estimate of the convergence rate in diffusion approximation of a particle motion under random forcing, Seminar on Stochastic Analysis, Random Fields and Applications V, (2008), 175-196.
  • T. Komorowski, Long time asymptotics of a degenerate linear kinetic transport equation, Kinet. Relat. Models 7 (2014), 79-108.
  • T. Komorowski, G. Krupa, Random walk in a random environment with correlated sites, J. Appl. Probab. 38 (2001), 1018-1032.
  • T. Komorowski, G. Krupa, On the existence of invariant measure for Lagrangian velocity in compressible environments, J. Statist. Phys. 106 (2002), 635-651.
  • T. Komorowski, G. Krupa, The law of large numbers for ballistic, multi-dimensional random walks on random lattices with correlated sites, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 263-285.
  • T. Komorowski, G. Krupa, A note on an application of the Lasota-Yorke fixed point theorem in the turbulent transport problem, Bull. Pol. Acad. Sci. Math. 52 (2004), 101-113.
  • T. Komorowski, G. Krupa, On stationarity of Lagrangian observations of passive tracer velocity in a compressible environment, Ann. Appl. Probab. 14 (2004), 1666-1697.
  • T. Komorowski, G. Krupa, The existence of a steady state for a perturbed symmetric random walk on a random lattice, Probab. Math. Statist. 24 (2004), 121-144.
  • T. Komorowski, G. Krupa, On the asymptotic behavior of an Ornstein-Uhlenbeck process with random forcing, Comm. Math. Phys. 261 (2006), 517-543.
  • T. Komorowski, G. Krupa, The existence of a steady state for a diffusion in a random environment with an external forcing, Multi scale problems and asymptotic analysis, (2006), 181-194.
  • T. Komorowski, C. Landim, S. Olla, Fluctuations in Markov processes, Springer, Heidelberg, 2012.
  • T. Komorowski, E. Nieznaj, On superdiffusive behavior of a passive tracer in a random flow, Phys. D 237 (2008), 3377-3381.
  • T. Komorowski, E. Nieznaj, On the asymptotic behavior of solutions of the heat equation with a random, long-range correlated potential, Potential Anal. 33 (2010), 175-197.
  • T. Komorowski, A. Novikov, L. Ryzhik, Evolution of particle separation in slowly decorrelating velocity fields, Commun. Math. Sci. 10 (2012), 767-786.
  • T. Komorowski, A. Novikov, L. Ryzhik, Homogenization driven by a fractional Brownian motion: the shear layer case, Multiscale Model. Simul. 12 (2014), 440-457.
  • T. Komorowski, S. Olla, On homogenization of time-dependent random flows, Probab. Theory Related Fields 121 (2001), 98-116.
  • T. Komorowski, S. Olla, On the superdiffusive behavior of passive tracer with a Gaussian drift, J. Statist. Phys. 108 (2002), 647-668.
  • T. Komorowski, S. Olla, On the sector condition and homogenization of diffusions with a Gaussian drift, J. Funct. Anal. 197 (2003), 179-211.
  • T. Komorowski, S. Olla, Invariant measures for passive tracer dynamics in Ornstein-Uhlenbeck flows, Stochastic Process. Appl. 105 (2003), 139-173.
  • T. Komorowski, S. Olla, A note on the central limit theorem for two-fold stochastic random walks in a random environment, Bull. Polish Acad. Sci. Math. 51 (2003), 217-232.
  • T. Komorowski, S. Olla, On mobility and Einstein relation for tracers in time-mixing random environments, J. Stat. Phys. 118 (2005), 407-435.
  • T. Komorowski, S. Olla, Einstein relation for random walks in random environments, Stochastic Process. Appl. 115 (2005), 1279-1301.
  • T. Komorowski, S. Olla, L. Ryzhik, Asymptotics of the solutions of the stochastic lattice wave equation, Arch. Ration. Mech. Anal. 209 (2013), 455-494.
  • T. Komorowski, G. Papanicolaou, Motion in a Gaussian incompressible flow, Ann. Appl. Probab. 7 (1997), 229-264.
  • T. Komorowski, S. Peszat, Transport of a passive tracer by an irregular velocity field, J. Statist. Phys. 115 (2004), 1361-1388.
  • T. Komorowski, S. Peszat, L. Ryzhik, Limit of fluctuations of solutions of Wigner equation, Comm. Math. Phys. 292 (2009), 479-510.
  • T. Komorowski, S. Peszat, T. Szarek, On ergodicity of some Markov processes, Ann. Probab. 38 (2010), 1401-1443.
  • T. Komorowski, S. Peszat, T. Szarek, Passive tracer in a flow corresponding to two-dimensional stochastic Navier-Stokes equations, Nonlinearity 26 (2013), 1999-2026.
  • T. Komorowski, L. Ryzhik, Diffusion in a weakly random Hamiltonian flow, Comm. Math. Phys. 263 (2006), 277-323.
  • T. Komorowski, L. Ryzhik, The stochastic acceleration problem in two dimensions, Israel J. Math. 155 (2006), 157-203.
  • T. Komorowski, L. Ryzhik, Passive tracer in a slowly decorrelating random flow with a large mean, Nonlinearity 20 (2007), 1215-1239.
  • T. Komorowski, L. Ryzhik, On asymptotics of a tracer advected in a locally self-similar, correlated flow, Asymptot. Anal. 53 (2007), 159-187.
  • T. Komorowski, L. Ryzhik, A sharp bound on the L2 norm of the solution of a random elliptic difference equation, Commun. Math. Sci. 9 (2011), 607-622.
  • T. Komorowski, L. Ryzhik, Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 871-914.
  • T. Komorowski, L. Ryzhik, Long time energy transfer in the random Schrödinger equation, Comm. Math. Phys. 329 (2014), 1131-1170.
  • T. Komorowski, Ł. Stpień, Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension, J. Stat. Phys. 148 (2012), 1-37.
  • T. Komorowski, T. Szarek, The law of the iterated logarithm for passive tracer in a two-dimensional flow, J. Lond. Math. Soc. (2) 89 (2014), 482-498.
  • T. Komorowski, J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228 (1990).
  • T. Komorowski, A. Walczuk, Central limit theorem for Markov processes with spectral gap in the Wasserstein metric, Stochastic Process. Appl. 122 (2012), 2155-2184.
  • T. Komorowski, P. Widelski, The existence of the effective diffusivity tensor for diffusions with incompressible mixing drifts, Probab. Math. Statist. 23 (2003), 337-355.
  • T. Komorowski, P. Widelski, Computation of the effective diffusivity tensor for transport of a passive scalar in a turbulent incompressible flow, SIAM J. Appl. Math. 65 (2004), 93-112 (electronic).
  • T. Komorowski, J. Wośko, A remark on the retracting of a ball onto a sphere in an infinite-dimensional Hilbert space, Math. Scand. 67 (1990), 223-226.
  • Y. Kondratiev, Y. Kozitsky, Quantum stabilization and decay of correlations in anharmonic crystals, Lett. Math. Phys. 65 (2003), 1-14.
  • Y. Kondratiev, Y. Kozitsky, T. Pasurek, Gibbs random fields with unbounded spins on unbounded degree graphs, J. Appl. Probab. 47 (2010), 856-875.
  • Y. Kondratiev, Y. Kozitsky, T. Pasurek, Gibbs measures of disordered lattice systems with unbounded spins, Markov Process. Related Fields 18 (2012), 553-582.
  • Y. Kondratiev, Y. Kozitsky, D. Shoikhet, Dynamical systems on sets of holomorphic functions, Complex analysis and dynamical systems IV. Part 1, (2011), 139-153.
  • M. Kotorowicz, Sierpiński gasket-based graphs in coding theory, Albanian J. Math. 2 (2008), 235-239.
  • A. Kowalski, E. Rudiuk, Lp-quantile correlation, Amer. J. Math. Management Sci. 24 (2004), 255-278.
  • A. Kowalski, E. Rudiuk, Correlation in Lp-spaces, J. Multivariate Anal. 96 (2005), 20-29.
  • A. Kowalski, D. Szynal, An optimal prediction in general ARMA models, J. Multivariate Anal. 34 (1990), 14-36.
  • A. Kowalski, D. Szynal, On a characterization of optimal predictors for nonstationary ARMA processes, Stochastic Process. Appl. 37 (1991), 71-80.
  • A. Kowalski, D. Szynal, On prediction in time-dependent L1-ARMA models, Stochastic methods in experimental sciences (Szklarska Porpolhk eba, 1989), (1990), 275-286.
  • A. Kowalski, D. Szynal, On general ARMA models and regularity conditions, Stochastic systems and optimization (Warsaw, 1988), (1989), 112-124.
  • A. Kowalski, D. Szynal, The Kalman filter in the case where there is a correlation between the noise of the meter and of the plant, Mat. Stos. 26 (1985), 93-117, 231.
  • A. Kowalski, D. Szynal, On linear predictors for nonstationary ARMA models, Scand. J. Statist. 15 (1988), 111-116.
  • A. Kowalski, D. Szynal, On state estimation and control in discrete-time systems of linear type, Automatica J. IFAC 24 (1988), 841-843.
  • A. Kowalski, D. Szynal, A simple characterization of optimal predictors for L1-ARMA processes, Systems Control Lett. 12 (1989), 273-279.
  • P. Kowalski, Z. Rychlik, On the products of a random number of independent random variables, Bull. Polish Acad. Sci. Math. 43 (1995), 219-230.
  • P. Kowalski, Z. Rychlik, On the weak law of large numbers for randomly indexed partial sums for arrays, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 109-119.
  • P. Kowalski, Z. Rychlik, Limit theorems for maximal random sums, Asymptotic methods in probability and statistics (Ottawa, ON, 1997), (1998), 13-29.
  • A. Kozak, Nonlinear Gaussian transformation in separable Hilbert spaces, Methods Funct. Anal. Topology 8 (2002), 50-58.
  • A. Kozak, Y. Kozitsky, Nonlinear Gaussian transformation, Ukrai n. Fi z. Zh. 45 (2000), 579-584.
  • A. Kozak, Y. Kozitsky, A nonlinear dynamical system as a solution of a FDE in a Hilbert space, Proceedings of the Third World Congress of Nonlinear Analysts, Part 6 (Catania, 2000), (2001), 3949-3961.
  • A. Kozak, Y. Kozitsky, Nonlinear integral transforms and dynamical systems on Hilbert spaces, Dynamic systems and applications. Vol. 4, (2004), 63-67.
  • A. Kozak, Y. Kozitsky, Nonlinear Gaussian transformation in Hilbert spaces, Integral Transforms Spec. Funct. 16 (2005), 545-563.
  • Y. Kozitsky, Lee-Yang properties of some isotropic spin models, Teoret. Mat. Fiz. 83 (1990), 23-33.
  • Y. Kozitsky, A limit theorem for hierarchically dependent isotropic random vectors, Dokl. Akad. Nauk Ukrain. SSR Ser. A (1990), 9-12, 79.
  • Y. Kozitsky, Laguerre entire functions: preservation of membership, differential operators and integral representations, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint (1990), 19.
  • Y. Kozitsky, The thermodynamic limit in a hierarchical vector model of a ferromagnet that has the Lee-Yang property, Methods of functional analysis in problems of mathematical physics (Russian), (1990), 103-110.
  • Y. Kozitsky, The thermodynamic limit in a hierarchical vector model of a ferromagnet possessing the Lee-Yang property [translation of it Methods of functional analysis in problems of mathematical physics (Russian), 103-110, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1990; MR1126757 (92g:82042)], Selecta Math. 13 (1994), 239-245.
  • Y. Kozitsky, Hierarchical vector model of a ferromagnet in the method of collective variables. The Lee-Yang theorem, Teoret. Mat. Fiz. 58 (1984), 96-108.
  • Y. Kozitsky, The order of a non-Gaussian fixed point of renormalization transforms in a hierarchical model of a ferromagnet, Dokl. Akad. Nauk Ukrain. SSR Ser. A (1986), 62-65.
  • Y. Kozitsky, N. O. Melrimenik, Eigenfunctions of infinite-order differential operators in a class of entire functions, Differentsialrime nye Uravneniya 25 (1989), 1273-1275, 1287-1288.
  • Y. Kozitsky, N. O. Melrimenik, Eigenfunctions of differential operators of infinite order in a class of Laguerre entire functions, Dokl. Akad. Nauk Ukrain. SSR Ser. A (1988), 9-12, 88.
  • Y. Kozitsky, N. O. Melrimenik, Random vectors that satisfy the generalized Lee-Yang theorem, Teoret. Mat. Fiz. 78 (1989), 177-186.
  • Y. Kozitsky, I. R. Yukhnovskiuı, Generalized hierarchical model of the scalar ferromagnet in the collective variable method, Teoret. Mat. Fiz. 51 (1982), 268-277.
  • Y. Kozitsky, Quantum effects in a lattice model of anharmonic vector oscillators, Lett. Math. Phys. 51 (2000), 71-81.
  • Y. Kozitsky, Quantum effects in lattice models of vector anharmonic oscillators, Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), (2000), 403-411.
  • Y. Kozitsky, Scalar domination and normal fluctuations in N-vector quantum anharmonic crystals, Lett. Math. Phys. 53 (2000), 289-303.
  • Y. Kozitsky, Gibbs states of a lattice system of quantum anharmonic oscillators, Noncommutative structures in mathematics and physics (Kiev, 2000), (2001), 415-425.
  • Y. Kozitsky, Laguerre entire functions and the Lee-Yang property, Appl. Math. Comput. 141 (2003), 103-112.
  • Y. Kozitsky, On a theorem of Høegh-Krohn, Lett. Math. Phys. 68 (2004), 183-193.
  • Y. Kozitsky, Gap estimates for double-well Schrödinger operators and quantum stabilization of anharmonic crystals, J. Dynam. Differential Equations 16 (2004), 385-392.
  • Y. Kozitsky, Irreducibility of dynamics and representation of KMS states in terms of Lévy processes, Arch. Math. (Basel) 85 (2005), 362-373.
  • Y. Kozitsky, P. Oleszczuk, G. Us, Integral operators and dual orthogonal systems on a half-line, Integral Transform. Spec. Funct. 12 (2001), 257-278.
  • Y. Kozitsky, P. Oleszczuk, L. Wołowski, Infinite order differential operators in spaces of entire functions, J. Math. Anal. Appl. 277 (2003), 423-437.
  • Y. Kozitsky, P. Oleszczuk, L. Wołowski, A class of differential operators based on (θ+zD)DzD, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), 233-245.
  • Y. Kozitsky, T. Pasurek, Gibbs states of interacting systems of quantum anharmonic oscillators, Lett. Math. Phys. 79 (2007), 23-37.
  • Y. Kozitsky, T. Pasurek, Euclidean Gibbs measures of interacting quantum anharmonic oscillators, J. Stat. Phys. 127 (2007), 985-1047.
  • Y. Kozitsky, T. Pasurek, Addendum and corrigendum to: ``Euclidean Gibbs measures of interacting quantum anharmonic oscillators'' [J. Stat. Phys. 127 (2007), no. 5, 985-1047; MR2317266], J. Stat. Phys. 132 (2008), 755-757.
  • Y. Kozitsky, D. Shoikhet, J. Zemánek, Power convergence of Abel averages, Arch. Math. (Basel) 100 (2013), 539-549.
  • Y. Kozitsky, L. Wołowski, A nonlinear dynamical system on the set of Laguerre entire functions, Nonlinear Anal. 49 (2002), 61-86.
  • Y. Kozitsky, L. Wolowski, Laguerre entire functions and related locally convex spaces, Complex Variables Theory Appl. 44 (2001), 225-244.
  • Y. Kozitsky, Hierarchical model of a vector ferromagnet. Self-similar block-spin distributions and the Lee-Yang theorem, Rep. Math. Phys. 26 (1988), 429-445.
  • Y. Kozitsky, Hierarchical ferromagnetic vector spin model possessing the Lee-Yang property. Thermodynamic limit at the critical point and above, J. Statist. Phys. 87 (1997), 799-820.
  • A. Krajka, Z. Rychlik, On the rate of convergence in the random central limit theorem in Hilbert space, Probab. Math. Statist. 11 (1990), 97-108.
  • A. Krajka, Z. Rychlik, The order of approximation in the invariance principle for H-valued random sums, Sankhyā Ser. A 51 (1989), 295-308.
  • A. Krajka, Z. Rychlik, On weak and moments convergence of randomly indexed sums, Math. Nachr. 157 (1992), 249-261.
  • A. Krajka, Z. Rychlik, Necessary and sufficient conditions for weak convergence of random sums of independent random variables, Comment. Math. Univ. Carolin. 34 (1993), 465-482.
  • A. Krajka, Z. Rychlik, The rate of convergence of randomly indexed sums of independent random variables to a stable law, Ann. Univ. Mariae Curie-Skłodowska Sect. A 46 (1992), 43-56.
  • A. Krajka, Z. Rychlik, The rate of convergence of sums of independent random variables to a stable law, Probab. Math. Statist. 14 (1993), 63-75.
  • A. Krajka, Z. Rychlik, Weak convergence of random reversed martingales with o-rates, Bull. Polish Acad. Sci. Math. 33 (1985), 65-71.
  • A. Krajka, Z. Rychlik, Approximation of the distribution function of sums of a random number of random variables, Bull. Polish Acad. Sci. Math. 34 (1986), 625-634 (1987).
  • A. Krajka, Z. Rychlik, On the difference between the distribution functions of two random sums of independent random variables, Math. Nachr. 134 (1987), 317-322.
  • A. Krajka, Z. Rychlik, The order of approximation in the central limit theorem for random summation, Acta Math. Hungar. 51 (1988), 109-115.
  • A. Krajka, Z. Rychlik, On the limit behaviour of randomly indexed sums of independent random variables, Litovsk. Mat. Sb. 28 (1988), 484-494.
  • T. Krajka, Z. Rychlik, The speed of convergence of random products of sums of independent random variables, J. Math. Appl. 31 (2009), 51-66.
  • T. K. Krajka, Z. Rychlik, Limit theorems for products of sums of independent random variables, Probab. Math. Statist. 30 (2010), 73-85.
  • Ł. Kruk, Convergence of tight asymptotic martingales in a Banach space, Math. Scand. 79 (1996), 153-160.
  • Ł. Kruk, Functional limit theorems for a simple auction, Math. Oper. Res. 28 (2003), 716-751.
  • Ł. Kruk, Limiting distributions for minimum relative entropy calibration, J. Appl. Probab. 41 (2004), 35-50.
  • Ł. Kruk, Diffusion approximation for G/G/1 EDF queue with unbounded lead times, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 51-90.
  • Ł. Kruk, Stability of two families of real-time queueing networks, Probab. Math. Statist. 28 (2008), 179-202.
  • Ł. Kruk, Invariant states for fluid models of EDF networks: nonlinear lifting map, Probab. Math. Statist. 30 (2010), 289-315.
  • Ł. Kruk, An open queueing network with asymptotically stable fluid model and unconventional heavy traffic behavior, Math. Oper. Res. 36 (2011), 538-551.
  • Ł. Kruk, Limiting distribution for a simple model of order book dynamics, Cent. Eur. J. Math. 10 (2012), 2283-2295.
  • Ł. Kruk, J. Lehoczky, K. Ramanan et al., Double Skorokhod map and reneging real-time queues, Markov processes and related topics: a Festschrift for Thomas G. Kurtz, (2008), 169-193.
  • Ł. Kruk, J. Lehoczky, K. Ramanan et al., Heavy traffic analysis for EDF queues with reneging, Ann. Appl. Probab. 21 (2011), 484-545.
  • Ł. Kruk, J. Lehoczky, S. Shreve, Accuracy of state space collapse for earliest-deadline-first queues, Ann. Appl. Probab. 16 (2006), 516-561.
  • Ł. Kruk, J. Lehoczky, S. Shreve, Second order approximation for the customer time in queue distribution under the FIFO service discipline, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 1 (2003), 37-48.
  • Ł. Kruk, J. Lehoczky, S. Shreve et al., Earliest-deadline-first service in heavy-traffic acyclic networks, Ann. Appl. Probab. 14 (2004), 1306-1352.
  • Ł. Kruk, W. Zięba, On almost sure convergence of asymptotic martingales, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 82-89.
  • Ł. Kruk, W. Zięba, A criterion of almost sure convergence of asymptotic martingales in a Banach space, Yokohama Math. J. 43 (1995), 61-72.
  • Ł. Kruk, W. Zięba, On tightness of randomly indexed sequences of random variables, Bull. Polish Acad. Sci. Math. 42 (1994), 237-241.
  • L. Kruk, Optimal policies for n-dimensional singular stochastic control problems. II. The radially symmetric case. Ergodic control, SIAM J. Control Optim. 39 (2000), 635-659 (electronic).
  • L. Kruk, J. Lehoczky, K. Ramanan et al., An explicit formula for the Skorokhod map on [0,a], Ann. Probab. 35 (2007), 1740-1768.
  • L. Kruk, J. Lehoczky, S. Shreve et al., Multiple-input heavy-traffic real-time queues, Ann. Appl. Probab. 13 (2003), 54-99.
  • L. Kruk, W. Zięba, On (B,ρ)-amarts and almost sure convergence, Teor. Veroyatnost. i Primenen. 40 (1995), 677-685.
  • G. Krupa, W. Zięba, On almost sure convergence of sequences of random elements, Bull. Polish Acad. Sci. Math. 40 (1992), 87-92.
  • G. Krupa, W. Zięba, Strong tightness as a condition of weak and almost sure convergence, Comment. Math. Univ. Carolin. 37 (1996), 641-650.
  • A. Kryczka, Quantitative approach to weak noncompactness in the polygon interpolation method, Bull. Austral. Math. Soc. 69 (2004), 49-62.
  • A. Kryczka, Seminorms related to weak compactness under real and complex interpolation for finite families of Banach spaces, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2, (2003), 727-740.
  • A. Kryczka, Weak noncompactness in Banach sequence spaces and its extrapolation properties, Math. Inequal. Appl. 11 (2008), 297-306.
  • A. Kryczka, Alternate signs Banach-Saks property and real interpolation of operators, Proc. Amer. Math. Soc. 136 (2008), 3529-3537.
  • A. Kryczka, Seminorm related to Banach-Saks property and real interpolation of operators, Integral Equations Operator Theory 61 (2008), 559-572.
  • A. Kryczka, Arithmetic separation and Banach-Saks sets, J. Math. Anal. Appl. 394 (2012), 772-780.
  • A. Kryczka, Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl. 407 (2013), 281-289.
  • A. Kryczka, T. Kuczumow, The Denjoy-Wolff-type theorem for compact kBH-nonexpansive maps on a Hilbert ball, Proceedings of Workshop on Fixed Point Theory (Kazimierz Dolny, 1997), (1997), 179-183.
  • A. Kryczka, S. Prus, Separated sequences in nonreflexive Banach spaces, Proc. Amer. Math. Soc. 129 (2001), 155-163.
  • A. Kryczka, S. Prus, Measure of weak noncompactness under complex interpolation, Studia Math. 147 (2001), 89-102.
  • A. Kryczka, S. Prus, M. Szczepanik, Measure of weak noncompactness and real interpolation of operators, Bull. Austral. Math. Soc. 62 (2000), 389-401.
  • J. Krzyż, E. Złotkiewicz, Koebe sets for univalent functions with two preassigned values, Ann. Acad. Sci. Fenn. Ser. A I No. 487 (1971), 12.
  • J. G. Krzyż, R. J. Libera, E. Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 103-110 (1981).
  • J. G. Krzyż, M. Nowak, Harmonic automorphisms of the unit disk, J. Comput. Appl. Math. 105 (1999), 337-346.
  • J. G. Krzyż, E. Złotkiewicz, Two remarks on typically-real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 30 (1976), 57-61 (1978).
  • T. Kuczumow, Opial's modulus and fixed points of semigroups of mappings, Proc. Amer. Math. Soc. 127 (1999), 2671-2678.
  • T. Kuczumow, The weak lower semicontinuity of the Kobayashi distance and its applications, Math. Z. 236 (2001), 1-9.
  • T. Kuczumow, A remark on the approximate fixed-point property, Abstr. Appl. Anal. (2003), 93-99.
  • T. Kuczumow, A remark on the approximate fixed-point property [ 1960140], Proceedings of the International Conference on Fixed-Point Theory and its Applications, (2003), 93-99.
  • T. Kuczumow, An almost convergence and its applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 32 (1978), 79-88 (1980).
  • T. Kuczumow, Common fixed points of commuting holomorphic mappings in Hilbert ball and polydisc, Nonlinear Anal. 8 (1984), 417-419.
  • T. Kuczumow, Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432.
  • T. Kuczumow, Nonexpansive retracts and fixed points of nonexpansive mappings in the Cartesian product of n Hilbert balls, Nonlinear Anal. 9 (1985), 601-604.
  • T. Kuczumow, Holomorphic retracts of polyballs, Proc. Amer. Math. Soc. 98 (1986), 374-375.
  • T. Kuczumow, Approximations of fixed points of holomorphic mappings, Boll. Un. Mat. Ital. A (7) 1 (1987), 217-220.
  • T. Kuczumow, Fixed points of holomorphic mappings in the Hilbert ball, Colloq. Math. 55 (1988), 101-107.
  • T. Kuczumow, Fixed point theorems in product spaces, Proc. Amer. Math. Soc. 108 (1990), 727-729.
  • T. Kuczumow, M. Michalska, The common fixed point set of commuting nonexpansive mappings in Cartesian products of separable spaces, Fixed point theory and its applications, (2007), 175-181.
  • T. Kuczumow, S. Prus, Compact asymptotic centers and fixed points of multivalued nonexpansive mappings, Houston J. Math. 16 (1990), 465-468.
  • T. Kuczumow, W. O. Ray, Isometries in the Cartesian product of n unit open Hilbert balls with a hyperbolic metric, Ann. Mat. Pura Appl. (4) 152 (1988), 359-374.
  • T. Kuczumow, S. Reich, Opial's property and James' quasi-reflexive spaces, Comment. Math. Univ. Carolin. 35 (1994), 283-289.
  • T. Kuczumow, S. Reich, An application of Opial's modulus to the fixed point theory of semigroups of Lipschitzian mappings, Proceedings of Workshop on Fixed Point Theory (Kazimierz Dolny, 1997), (1997), 185-192.
  • T. Kuczumow, S. Reich, M. Schmidt, A fixed point property of l1-product spaces, Proc. Amer. Math. Soc. 119 (1993), 457-463.
  • T. Kuczumow, S. Reich, M. Schmidt et al., Strong asymptotic normal structure and fixed points in product spaces, Nonlinear Anal. 21 (1993), 501-515.
  • T. Kuczumow, S. Reich, M. Schmidt et al., The product retraction property for the c0-product of countably many metric spaces, Math. Japon. 39 (1994), 73-79.
  • T. Kuczumow, S. Reich, D. Shoikhet, The existence and non-existence of common fixed points for commuting families of holomorphic mappings, Nonlinear Anal. 43 (2001), 45-59.
  • T. Kuczumow, S. Reich, D. Shoikhet, Fixed points of holomorphic mappings: a metric approach, Handbook of metric fixed point theory, (2001), 437-515.
  • T. Kuczumow, S. Reich, A. Stachura, Minimal displacement of points under holomorphic mappings and fixed point properties for unions of convex sets, Trans. Amer. Math. Soc. 343 (1994), 575-586.
  • T. Kuczumow, S. Reich, A. Stachura, Holomorphic retracts of the open unit ball in the l1-product of Hilbert spaces, Recent advances on metric fixed point theory (Seville, 1995), (1996), 99-110.
  • T. Kuczumow, W. Rzymowski, A. Stachura, Lipschitzian homeomorphisms with large sets of directional derivatives, Real Anal. Exchange 15 (1989/90), 696-703.
  • T. Kuczumow, A. Stachura, Common fixed points of commuting holomorphic mappings, Kodai Math. J. 12 (1989), 423-428.
  • T. Kuczumow, A. Stachura, Iterates of holomorphic and kD-nonexpansive mappings in convex domains in Cn, Adv. Math. 81 (1990), 90-98.
  • T. Kuczumow, A. Stachura, Bruck's retraction method, Fixed point theory and applications (Marseille, 1989), (1991), 285-292.
  • T. Kuczumow, A. Stachura, Open problems, Fixed point theory and applications (Marseille, 1989), (1991), 463-464.
  • T. Kuczumow, A. Stachura, A product retraction property, Math. Japon. 37 (1992), 563-567.
  • T. Kuczumow, A. Stachura, The Denjoy-Wolff theorem for s-condensing mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 53 (1999), 107-113.
  • T. Kuczumow, A. Stachura, Fixed points of holomorphic mappings in the Cartesian product of n unit Hilbert balls, Canad. Math. Bull. 29 (1986), 281-286.
  • T. Kuczumow, A. Stachura, Convexity and fixed points of holomorphic mappings in Hilbert ball and polydisc, Bull. Polish Acad. Sci. Math. 34 (1986), 189-193.
  • T. Kuczumow, A. Stachura, Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. I, II, Comment. Math. Univ. Carolin. 29 (1988), 399-402, 403-410.
  • A. Kukuryka, M. Nowak, P. Sobolewski, Regular sets of sampling and interpolation in Bergman spaces, Rocky Mountain J. Math. 37 (2007), 865-877.
  • J. Kurek, Construction of an object of center-projective connection, Ann. Univ. Mariae Curie-Skłodowska Sect. A 27 (1973), 49-54 (1975).
  • J. Kurek, On a horizontal lift of a linear connection to the bundle of linear frames, Ann. Univ. Mariae Curie-Skłodowska Sect. A 41 (1987), 31-38 (1989).
  • J. Kurek, On natural operators on sectorform fields, v Casopis Pv est. Mat. 115 (1990), 232-239.
  • J. Kurek, On the natural operators of vertical prolongation type on 1-connection bundle, Demonstratio Math. 23 (1990), 161-173.
  • J. Kurek, On the first order natural operators transforming 1-forms on manifold to the tangent bundle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 79-83 (1991).
  • J. Kurek, On the natural operators of Bianchi type, Arch. Math. (Brno) 27A (1991), 25-29.
  • J. Kurek, Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58 (1993), 29-35.
  • J. Kurek, Natural affinors on higher order cotangent bundle, Arch. Math. (Brno) 28 (1992), 175-180.
  • J. Kurek, On natural operators transforming vector fields on manifold to second iterated tangent bundle, Demonstratio Math. 25 (1992), 765-776.
  • J. Kurek, On the first order natural operators transforming 1-forms on manifold to linear frame bundle, Demonstratio Math. 26 (1993), 287-293.
  • J. Kurek, On natural transformations of higher order covelocities functor, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 83-88 (1992).
  • J. Kurek, On gauge-natural operators of curvature type on pairs of connections, Demonstratio Math. 28 (1995), 123-132.
  • J. Kurek, Natural transformations of any higher order covelocities bundle functor, Demonstratio Math. 28 (1995), 253-262.
  • J. Kurek, On the jets of vector bundle maps, Differential Geom. Appl. 29 (2011), S234-S237.
  • J. Kurek, On a structure of a linearized tangent bundle of second order, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 53-60 (1984).
  • J. Kurek, On some linear connections of second order, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 61-68 (1984).
  • J. Kurek, On a structure of tensor fields of type (1,0),(0,1),(0,2),(1,1) on a linearized tangent bundle of second order, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 69-80 (1984).
  • J. Kurek, On some Riemannian structure on linearized tangent bundle of second order, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 81-86 (1984).
  • J. Kurek, On a horizontal lift of a linear connection into linearized tangent bundle of second order, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), 259-266.
  • J. Kurek, W. M. Mikulski, The natural operators lifting 1-forms to some vector bundle functors, Colloq. Math. 93 (2002), 259-265.
  • J. Kurek, W. M. Mikulski, The natural linear operators T*TT(r), Colloq. Math. 95 (2003), 37-47.
  • J. Kurek, W. M. Mikulski, The natural operators lifting 1-forms to the r-jet prolongation of the cotangent bundle, Differential geometry and its applications (Opava, 2001), (2001), 215-227.
  • J. Kurek, W. M. Mikulski, The natural operators lifting horizontal 1-forms to some vector bundle functors on fibered manifolds, Colloq. Math. 97 (2003), 141-149.
  • J. Kurek, W. M. Mikulski, Symplectic structures on the tangent bundles of symplectic and cosymplectic manifolds, Ann. Polon. Math. 82 (2003), 273-285.
  • J. Kurek, W. M. Mikulski, Natural affinors on the (r,s,q)-cotangent bundle of a fibered manifold, Ann. Polon. Math. 83 (2004), 57-64.
  • J. Kurek, W. M. Mikulski, Lifting of linear vector fields to fiber product preserving vertical gauge bundles, Colloq. Math. 103 (2005), 33-40.
  • J. Kurek, W. M. Mikulski, The Euler and Helmholtz operators on fibered manifolds with oriented bases, Colloq. Math. 105 (2006), 171-177.
  • J. Kurek, W. M. Mikulski, Canonical affinors on the tangent bundle of a symplectic manifold, Differential geometry and its applications, (2005), 341-348.
  • J. Kurek, W. M. Mikulski, Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold, Extracta Math. 21 (2006), 159-166.
  • J. Kurek, W. M. Mikulski, Lifting of p-forms to higher order cotangent bundles, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 52 (2006), 411-415.
  • J. Kurek, W. M. Mikulski, Constructions on second order connections, Ann. Polon. Math. 92 (2007), 215-223.
  • J. Kurek, W. M. Mikulski, Lifting vector fields to the r-th order frame bundle, Colloq. Math. 111 (2008), 51-58.
  • J. Kurek, W. M. Mikulski, Bundle functors on all foliated manifold morphisms have locally finite order, Ann. Polon. Math. 93 (2008), 69-74.
  • J. Kurek, W. M. Mikulski, Lifting adapted connections from foliated manifolds to higher order adapted frame bundles, Ann. Polon. Math. 93 (2008), 163-169.
  • J. Kurek, W. M. Mikulski, Riemannian structures on higher order frame bundles over Riemannian manifolds, Lobachevskii J. Math. 27 (2007), 41-46.
  • J. Kurek, W. M. Mikulski, Canonical vector valued 1-forms on higher order principal prolongations, Lobachevskii J. Math. 29 (2008), 24-26.
  • J. Kurek, W. M. Mikulski, The natural affinors on the r-th order frame bundle, Demonstratio Math. 41 (2008), 701-704.
  • J. Kurek, W. M. Mikulski, Lifting infinitesimal automorphisms to higher order adapted frame bundles, Extracta Math. 23 (2008), 61-70.
  • J. Kurek, W. M. Mikulski, Like jet prolongation functors of affine bundles, Differential geometry and its applications, (2008), 475-487.
  • J. Kurek, W. M. Mikulski, On the existence of constructions on connections by gauge bundle functors, Extracta Math. 23 (2008), 155-162.
  • J. Kurek, W. M. Mikulski, Riemannian structures on higher order frame bundles from classical linear connections, Differential geometry, (2009), 296-300.
  • J. Kurek, W. M. Mikulski, Distributions on the cotangent bundle from torsion-free connections, Differential geometry, (2009), 301-305.
  • J. Kurek, W. M. Mikulski, Lifting to the r-frame bundle by means of connections, Ann. Polon. Math. 97 (2010), 63-71.
  • J. Kurek, W. M. Mikulski, Fiber product preserving bundle functors of vertical type, Differential Geom. Appl. 35 (2014), 150-155.
  • J. Kurek, W M. Mikulski, Liftings of horizontal 1-forms to some vector bundle functors on fibered fibered manifolds, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 59-68.
  • J. Kurek, W M. Mikulski, The natural functions on the cotangent bundle of higher order vector tangent bundles over fibered manifolds, Cent. Eur. J. Math. 2 (2004), 801-810 (electronic).
  • J. Kurek, W M. Mikulski, The natural transformations TT(r),a->TT(r),a, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 77-84.
  • J. Kurek, W M. Mikulski, Some natural operators in linear vector fields, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 89-97.
  • J. Kurek, W M. Mikulski, The natural affinors on some fiber product preserving gauge bundle functors of vector bundles, Arch. Math. (Brno) 42 (2006), 59-67.
  • J. Kurek, W M. Mikulski, Tensor fields on LM induced by tensor fields on M by means of connections on M, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 39-42.
  • J. Kurek, W M. Mikulski, Higher order jet prolongations type gauge natural bundles over vector bundles, Ann. Acad. Pedagog. Crac. Stud. Math. 4 (2004), 111-122.
  • J. Kurek, W M. Mikulski, On infinitesimal automorphisms of foliated manifolds, Ann. Polon. Math. 92 (2007), 1-12.
  • J. Kurek, W M. Mikulski, Generalized Weil functors on affine bundles, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 91-99.
  • J. Kurek, W M. Mikulski, Second order nonholonomic connections from second order nonholonomic ones, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 101-106.
  • J. Kurek, W M. Mikulski, The natural affinors on higher order principal prolongations, Int. Electron. J. Geom. 1 (2008), 11-14.
  • J. Kurek, W M. Mikulski, The natural operators lifting vector fields to the bundle of affinors, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 75-80.
  • J. Kurek, W M. Mikulski, On prolongations of projectable connections, Ann. Polon. Math. 101 (2011), 237-250.
  • J. Kurek, W M. Mikulski, On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (2012), 319-324.
  • J. Kurek, W M. Mikulski, The natural liftings of connections to tensor powers of the cotangent bundle, Miskolc Math. Notes 14 (2013), 517-524.
  • D. Kutzarova, E. Maluta, S. Prus, Property (β) implies normal structure of the dual space, Rend. Circ. Mat. Palermo (2) 41 (1992), 353-368.
  • D. Kutzarova, E. Maluta, S. Prus, On some p-estimates for Banach spaces, Bull. Austral. Math. Soc. 48 (1993), 187-194.
  • D. Kutzarova, L. I. Nikolova, S. Prus, Finite-dimensional decompositions with (p,q)-estimates in interpolation spaces for families, Arch. Math. (Basel) 67 (1996), 217-225.
  • D. Kutzarova, L. I. Nikolova, S. Prus, Infinite-dimensional geometric properties of real interpolation spaces, Math. Nachr. 191 (1998), 215-228.
  • D. Kutzarova, S. Prus, Operators which factor through nearly uniformly convex spaces, Boll. Un. Mat. Ital. B (7) 9 (1995), 479-494.
  • D. Kutzarova, S. Prus, B. Sims, Remarks on orthogonal convexity of Banach spaces, Houston J. Math. 19 (1993), 603-614.
  • Z. A. Lagodowski, P. Matuła, On almost sure limiting behavior of weighted sums of random fields, Acta Math. Hungar. 126 (2010), 16-22.
  • Z. A. Lagodowski, P. Matuła, SLLN for random fields under conditions on the bivariate dependence structure, Publ. Math. Debrecen 76 (2010), 329-339.
  • F. Lazebnik, V. A. Ustimenko, Some algebraic constructions of dense graphs of large girth and of large size, Expanding graphs (Princeton, NJ, 1992), (1993), 75-93.
  • F. Lazebnik, V. A. Ustimenko, New examples of graphs without small cycles and of large size, European J. Combin. 14 (1993), 445-460.
  • F. Lazebnik, V. A. Ustimenko, Explicit construction of graphs with an arbitrary large girth and of large size, Discrete Appl. Math. 60 (1995), 275-284.
  • F. Lazebnik, V. A. Ustimenko, A. J. Woldar, Properties of certain families of 2k-cycle-free graphs, J. Combin. Theory Ser. B 60 (1994), 293-298.
  • F. Lazebnik, V. A. Ustimenko, A. J. Woldar, New constructions of bipartite graphs on m,n vertices with many edges and without small cycles, J. Combin. Theory Ser. B 61 (1994), 111-117.
  • F. Lazebnik, V. A. Ustimenko, A. J. Woldar, A new series of dense graphs of high girth, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 73-79.
  • F. Lazebnik, V. A. Ustimenko, A. J. Woldar, A characterization of the components of the graphs D(k,q), Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), (1996), 271-283.
  • F. Lazebnik, V. A. Ustimenko, A. J. Woldar, New upper bounds on the order of cages, Electron. J. Combin. 4 (1997), Research Paper 13, approx. 11 pp. (electronic).
  • F. Lazebnik, V. A. Ustimenko, A. J. Woldar, Polarities and 2k-cycle-free graphs, Discrete Math. 197/198 (1999), 503-513.
  • A. Lewandowski, E. Złotkiewicz, Variational formulae for functions meromorphic and univalent in the unit disc, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 253-254.
  • Z. A. Lewandowski, R. J. Libera, E. J. Złotkiewicz, Mapping properties of a class of univalent functions with preassigned zero and pole, Ann. Polon. Math. 40 (1983), 283-290.
  • Z. Lewandowski, R. Libera, E. Złotkiewicz, Values assumed by Gelrime fer functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 31 (1977), 75-84 (1979).
  • Z. Lewandowski, S. Miller, E. Złotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc. 56 (1976), 111-117.
  • Z. Lewandowski, S. Miller, E. Złotkiewicz, Gamma-starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 28 (1974), 53-58 (1976).
  • Z. Lewandowski, M. O. Reade, E. Złotkiewicz, On a certain condition for univalence, An. Sti. Univ. ``Al. I. Cuza'' Iasi Sect. I a Mat. (N.S.) 11B (1965), 119-123.
  • Z. Lewandowski, E. Złotkiewicz, On the domain of variability of the second coefficient fora class of meromorphic, univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 21-25.
  • Z. Lewandowski, E. Złotkiewicz, Variational formulae for functions meromorphic and univalent in the unit disc, Ann. Univ. Mariae Curie-Sklodowska Sect. A 17 (1963), 47-53 (1965).
  • R. J. Libera, E. Złotkiewicz, A property of convex mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 36/37 (1982/83), 97-99 (1985).
  • R. J. Libera, E. Złotkiewicz, Bounded Montel univalent functions, Colloq. Math. 56 (1988), 169-177.
  • R. J. Libera, E. J. Złotkiewicz, Loewner-type approximations for convex functions, Colloq. Math. 36 (1976), 143-151.
  • R. J. Libera, E. J. Złotkiewicz, Loewner-type equations for some classes of functions, Complex analysis (Proc. S.U.N.Y. Conf., Brockport, N.Y., 1976), (1978), 75-85. Lecture Notes in Pure and Appl. Math., Vol. 36.
  • R. J. Libera, E. J. Złotkiewicz, Bounded functions with symmetric normalization, Ann. Univ. Mariae Curie-Skłodowska Sect. A 42 (1988), 69-77.
  • R. J. Libera, E. J. Złotkiewicz, Löwner's inverse coefficients theorem for starlike functions, Amer. Math. Monthly 99 (1992), 49-50.
  • R. J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), 225-230.
  • R. J. Libera, E. J. Złotkiewicz, Coefficient bounds for inverses of odd univalent functions, Complex Variables Theory Appl. 3 (1984), 185-189.
  • R. J. Libera, E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P. II, Proc. Amer. Math. Soc. 92 (1984), 58-60.
  • R. J. Libera, E. J. Złotkiewicz, The coefficients of the inverse of an odd convex function, Rocky Mountain J. Math. 15 (1985), 677-683.
  • R. J. Libera, E. J. Złotkiewicz, Behavior of coefficients of inverses of α-spiral functions, Canad. J. Math. 38 (1986), 1329-1337.
  • R. J. Libera, E. J. Złotkiewicz, Bounded univalent functions with Montel normalization, Proceedings of the 9th Conference on Analytic Functions (Lublin, 1986), (1986), 125-130 (1987).
  • R. J. Libera, E. J. Złotkiewicz, Bounded univalent functions with two fixed values, Complex Variables Theory Appl. 9 (1987), 1-13.
  • B. Loff, J. Fé. Costa, J. Mycka, Computability on reals, infinite limits and differential equations, Appl. Math. Comput. 191 (2007), 353-371.
  • Z. A. Łagodowski, Z. Rychlik, Weak convergence of sequences of random elements with multidimensional random indices, Publ. Math. Debrecen 37 (1990), 35-40.
  • Z. A. Łagodowski, Z. Rychlik, Complete convergence and convergence rates for randomly indexed sums of random variables with multidimensional indices, Bull. Polish Acad. Sci. Math. 33 (1985), 219-223.
  • Z. A. Łagodowski, Z. Rychlik, Rate of convergence in the strong law of large numbers for martingales, Probab. Theory Relat. Fields 71 (1986), 467-476.
  • Z. A. Łagodowski, Z. Rychlik, Convergence rates in the strong law of large numbers for sums of random variables with multidimensional indices, Probab. Math. Statist. 7 (1986), 149-158.
  • Z. A. Łagodowski, Z. Rychlik, Weak convergence of probability measures on the function space Dd[0,∞), Bull. Polish Acad. Sci. Math. 34 (1986), 329-335.
  • Z. Łagodowski, Z. Rychlik, Some remarks on the strong law of large numbers for random fields, Bull. Polish Acad. Sci. Math. 32 (1984), 129-134.
  • B. Łanucha, M. Nowak, M. Pavlović, Hilbert matrix operator on spaces of analytic functions, Ann. Acad. Sci. Fenn. Math. 37 (2012), 161-174.
  • D. Majerek, W. Nowak, W. Zięba, Conditional strong law of large number, Int. J. Pure Appl. Math. 20 (2005), 143-157.
  • D. Majerek, W. Nowak, W. Zięba, On uniform integrability of random variables, Statist. Probab. Lett. 74 (2005), 272-280.
  • D. Majerek, W. Zięba, Conditional martingales, Acta Math. Vietnam. 32 (2007), 41-50.
  • D. Majerek, W. Zięba, Conditional version of Marcinkiewicz-Zygmunt's theorem, Int. Math. Forum 3 (2008), 1233-1240.
  • A. Makarewicz, P. Pikuta, D. Szałkowski, Properties of the determinant of a rectangular matrix, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (2014), 31-41.
  • I. Malinowska, P. Pawlas, D. Szynal, Estimation of the parameters of Gumbel and Burr distributions in terms of k-th record values, Appl. Math. (Warsaw) 32 (2005), 375-393.
  • I. Malinowska, P. Pawlas, D. Szynal, Estimation of location and scale parameters for the Burr XII distribution using generalized order statistics, Linear Algebra Appl. 417 (2006), 150-162.
  • E. Maluta, S. Prus, Banach spaces which are dual to k-uniformly convex spaces, J. Math. Anal. Appl. 209 (1997), 479-491.
  • E. Maluta, S. Prus, Minimal sets for the Hausdorff measure of noncompactness and related coefficients, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), (2001), 2753-2764.
  • E. Maluta, S. Prus, M. Szczepanik, On Milman's moduli for Banach spaces, Abstr. Appl. Anal. 6 (2001), 115-129.
  • E. Maluta, S. Prus, J. Wośko, Fixed point free mappings which satisfy a Darbo type condition, Fixed point theory and its applications, (2006), 171-184.
  • H. Martini, W. Mozgawa, An integral formula related to inner isoptics, Rend. Semin. Mat. Univ. Padova 125 (2011), 39-49.
  • P. Matuła, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), 209-213.
  • P. Matuła, Some limit theorems for negatively dependent random variables, Yokohama Math. J. 41 (1994), 163-173.
  • P. Matuła, Convergence of weighted averages of associated random variables, Probab. Math. Statist. 16 (1996), 337-343.
  • P. Matuła, A remark on the weak convergence of sums of associated random variables, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 115-123.
  • P. Matuła, The Glivenko-Cantelli lemma for a class of discrete associated random variables, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 129-132.
  • P. Matuła, Probability and moment bounds for sums of negatively associated random variables, Teor. u Imovi r. Mat. Stat. (1996), 130-135.
  • P. Matuła, A note on mixing properties of certain associated processes, Acta Math. Hungar. 82 (1999), 107-112.
  • P. Matuła, On the almost sure central limit theorem for associated random variables, Probab. Math. Statist. 18 (1998), 411-416.
  • P. Matuła, Limit theorems for sums of nonmonotonic functions of associated random variables, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part I (Nalpolhk eczow, 1999), (2001), 2590-2593.
  • P. Matuła, On some inequalities for positively and negatively dependent random variables with applications, Publ. Math. Debrecen 63 (2003), 511-522.
  • P. Matuła, A note on some inequalities for certain classes of positively dependent random variables, Probab. Math. Statist. 24 (2004), 17-26.
  • P. Matuła, On some families of aqsi random variables and related strong law of large numbers, Appl. Math. E-Notes 5 (2005), 31-35 (electronic).
  • P. Matuła, On almost sure limit theorems for positively dependent random variables, Statist. Probab. Lett. 74 (2005), 59-66.
  • P. Matuła, Z. Rychlik, The invariance principle for nonstationary sequences of associated random variables, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 387-397.
  • P. Matuła, Z. Rychlik, Distribution and moment convergence of sums of associated random variables, Math. Pannon. 1 (1990), 117-123.
  • P. Matuła, M. Seweryn, Weighted strong law of large numbers for random variables indexed by a sector, J. Probab. Stat. (2011), Art. ID 701952, 16.
  • P. Matuła, M. Seweryn, Weighted averages of random variables and exact weights, Demonstratio Math. 45 (2012), 377-384.
  • P. Matuła, M. Seweryn, Acknowledgement of priority ``Weighted averages of random variables and exact weights'' [MR2963075], Demonstr. Math. 47 (2014), 507-508.
  • P. Matuła, I. Stpień, Weak convergence of products of sums of independent and non-identically distributed random variables, J. Math. Anal. Appl. 353 (2009), 49-54.
  • P. Matuła, I. Stpień, Functional limit theorem for products of sums of independent and nonidentically distributed random variables, J. Math. (2013), Art. ID 640137, 6.
  • P. Matuła, I. Stepień, A remark on the rate of convergence for products of sums, Far East J. Math. Sci. (FJMS) 34 (2009), 361-368.
  • P. Matuła, M. Ziemba, Generalized covariance inequalities, Cent. Eur. J. Math. 9 (2011), 281-293.
  • M. Michalska, A sufficient condition for the convexity of the area of an isoptic curve of an oval, Rend. Sem. Mat. Univ. Padova 110 (2003), 161-169.
  • M. Michalska, On Dirichlet type spaces on the unit ball of Cn, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011), 75-86.
  • M. Michalska, M. Nowak, P. Sobolewski, Bounded Toeplitz and Hankel products on weighted Bergman spaces of the unit ball, Ann. Polon. Math. 99 (2010), 45-53.
  • M. Michalska, M. Nowak, P. Sobolewski, Möbius invariant Besov spaces on the unit ball of Cn, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011), 87-97.
  • M. Michalska, D. V. Prokhorov, J. Szynal, The compositions of hyperbolic triangle mappings, Complex Variables Theory Appl. 43 (2000), 179-186.
  • M. Michalska, J. Szynal, A new bound for the Laguerre polynomials, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), (2001), 489-493.
  • A. Miernowski, W. Mozgawa, On Molino lifting of Riemannian vector fields, Acta Math. Hungar. 55 (1990), 185-191.
  • A. Miernowski, W. Mozgawa, Projective spaces of second order, Collect. Math. 48 (1997), 355-362.
  • A. Miernowski, W. Mozgawa, Isoptics of rosettes and rosettes of constant width, Note Mat. 15 (1995), 203-213 (1997).
  • A. Miernowski, W. Mozgawa, On some geometric condition for convexity of isoptics, Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), 93-98 (1998).
  • A. Miernowski, W. Mozgawa, Isoptics of pairs of nested closed strictly convex curves and Crofton-type formulas, Beiträge Algebra Geom. 42 (2001), 281-288.
  • A. Miernowski, W. Mozgawa, Geometry of t-projective structures, Demonstratio Math. 35 (2002), 391-403.
  • A. Miernowski, W. Mozgawa, On the curves of constant relative width, Rend. Sem. Mat. Univ. Padova 107 (2002), 57-65.
  • A. Miernowski, W. Mozgawa, Isoptics of open, convex curves and Crofton-type formulas, Istanbul Üniv. Fen Fak. Mat. Derg. 57/58 (1998/99), 1-8.
  • A. Miernowski, W. Mozgawa, Horizontal lifts of tensor fields to the bundle of volume forms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 69-75.
  • A. Miernowski, W. Mozgawa, Lift of the Finsler foliation to its normal bundle, Differential Geom. Appl. 24 (2006), 209-214.
  • A. Miernowski, W. Mozgawa, A note on the theorem of Pasternak [Pasternack], Serdica 13 (1987), 197.
  • A. Miernowski, W. Mozgawa, W. Rzymowski, Minimal area tetrahedron circumscribing a strictly convex body in R3, J. Convex Anal. 14 (2007), 27-33.
  • A. Miernowski, W. Mozgawa, W. Rzymowski, Minimal area n-simplex circumscribing a strictly convex body in Rn, J. Geom. 87 (2007), 99-105.
  • A. Miernowski, Z. Radziszewski, A note on the torsion of a vector field, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 87-90 (1984).
  • P. T. Mocanu, M. O. Reade, E. Złotkiewicz, On the functional [f(z1)/f (z2)], for typically-real functions, Rev. Anal. Numér. Théorie Approximation 3 (1974), 209-214 (1975).
  • P. T. Mocanu, M. O. Reade, E. J. Złotkiewicz, On Bazileviv c functions, Proc. Amer. Math. Soc. 39 (1973), 173-174.
  • W. Mozgawa, Some topological properties of Grassmannians of higher order, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 691-695.
  • W. Mozgawa, Structures holomorphiquement projectives. III. Structures plates et invariantes sur des variétés homogènes, Ann. Fac. Sci. Toulouse Math. (5) 10 (1989), 171-191.
  • W. Mozgawa, Bar billiards and Poncelet's porism, Rend. Semin. Mat. Univ. Padova 120 (2008), 157-166.
  • W. Mozgawa, Integral formulas related to ovals, Beiträge Algebra Geom. 50 (2009), 555-561.
  • W. Mozgawa, Flat bundles on homogeneous spaces, Demonstratio Math. 12 (1979), 947-954.
  • W. Mozgawa, Quasiconnections in the semiholonomic frame bundle of second order and their differential invariants, An. Stiint. Univ. ``Al. I. Cuza'' Iasi Sect. I a Mat. (N.S.) 27 (1981), 297-316.
  • W. Mozgawa, On the nonexistence of parabolical Podkovyrin quasiconnections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 127-139 (1981).
  • W. Mozgawa, Holomorphically projective structures. I. The connections, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 30 (1984), 55-68.
  • W. Mozgawa, Holomorphically projective structures. II. The transgressed classes, Rend. Circ. Mat. Palermo (2) 34 (1985), 192-201.
  • W. Mozgawa, Feuilletages de Killing, Collect. Math. 36 (1985), 285-290.
  • W. Mozgawa, Curvature and torsion tensors of quasi-connection on manifold with singular tensor, Ann. Univ. Mariae Curie-Skłodowska Sect. A 39 (1985), 105-112 (1988).
  • W. Mozgawa, Riemannian vector fields and Pontrjagin numbers, Ann. Univ. Mariae Curie-Skłodowska Sect. A 39 (1985), 113-115 (1988).
  • W. Mozgawa, W Rompała, On connections in f-manifolds, Rev. Roumaine Math. Pures Appl. 29 (1984), 249-254.
  • W. Mozgawa, M. Skrzypiec, Crofton formulas and convexity condition for secantoptics, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 435-445.
  • W. Mozgawa, M. Skrzypiec, Some properties of secantoptics of ovals, Beitr. Algebra Geom. 53 (2012), 261-272.
  • W. Mozgawa, M. Skrzypiec, Integral formula for secantoptics and its application, Ann. Univ. Mariae Curie-Skłodowska Sect. A 66 (2012), 49-62.
  • W. Mozgawa, A. Szybiak, Invariant connections of higher order on homogeneous spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 141-155 (1981).
  • K. Murawski, K. Murawski, P. Stpiczyński, Implementation of MUSCL-Hancock method into the C++ code for the Euler equations, Bulletin of the Polish Academy of Sciences: Technical Sciences 60 (2012), 45-53.
  • K. Murawski, K. Murawski, P. Stpiczyński, MPI-GPU/CUDA implementation of TVDLF method for the two-dimensional advection equation, Control and Cybernetics 43 (2014), 307-320.
  • J. Mycka, μ-recursion and infinite limits, Theoret. Comput. Sci. 302 (2003), 123-133.
  • J. Mycka, Infinite limits and R-recursive functions, Acta Cybernet. 16 (2003), 83-91.
  • J. Mycka, Analog computation beyond the Turing limit, Appl. Math. Comput. 178 (2006), 103-117.
  • J. Mycka, Two hierarchies of R-recursive functions, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 1 (2003), 49-59.
  • J. Mycka, Mind and information processing: some considerations, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 2 (2004), 71-80.
  • J. Mycka, Analog computation and Church's thesis, Church's thesis after 70 years, (2006), 331-352.
  • J. Mycka, Real recursive functions and Baire classes, Fund. Inform. 65 (2005), 263-278.
  • J. Mycka, A simple observation regarding iterations of finite-valued polynomial-time functions, Rep. Math. Logic (2009), 19-29.
  • J. Mycka, Recursively enumerable sets and well-ordering of their enumerations, Rep. Math. Logic (2014), 79-97.
  • J. Mycka, F. Coelho, J. Fé. Costa, The Euclid abstract machine: trisection of the angle and the halting problem, Unconventional computation, (2006), 195-206.
  • J. Mycka, J. Fé. Costa, Real recursive functions and their hierarchy, J. Complexity 20 (2004), 835-857.
  • J. Mycka, J. Fé. Costa, The computational power of continuous dynamic systems, Machines, computations, and universality, (2005), 164-175.
  • J. Mycka, J. Fé. Costa, The P≠NP conjecture in the context of real and complex analysis, J. Complexity 22 (2006), 287-303.
  • J. Mycka, J. Fé. Costa, Undecidability over continuous time, Log. J. IGPL 14 (2006), 649-658.
  • J. Mycka, J. Fé. Costa, A new conceptual framework for analog computation, Theoret. Comput. Sci. 374 (2007), 277-290.
  • J. Mycka, P. Rafalski, Simultaneous Markov-like algorithms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 123-131.
  • M. Nowak, Equations of motion of an elastic free-free body, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 17 (1969), 31-36.
  • M. Nowak, On the use of the least-squares method in the subsonic lifting-surface problem, Z. Angew. Math. Mech. 57 (1977), T196-T198.
  • M. Nowak, Some inequalities for BMOA functions, Complex Variables Theory Appl. 16 (1991), 81-86.
  • M. Nowak, Some new inequalities for periodic quasisymmetric functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 93-100 (1991).
  • M. Nowak, A note on coefficient multipliers (Hp,B) and (Hp, BMOA), Topics in complex analysis (Warsaw, 1992), (1995), 299-302.
  • M. Nowak, On Hankel operators with conjugate analytic symbols, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 67-79.
  • M. Nowak, Hankel operators on the Bergman space of the unit ball, Proc. Amer. Math. Soc. 126 (1998), 2005-2012.
  • M. Nowak, Integral means of univalent harmonic maps, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 155-162.
  • M. Nowak, Bloch space on the unit ball of Cn, Ann. Acad. Sci. Fenn. Math. 23 (1998), 461-473.
  • M. Nowak, Compact Hankel operators with conjugate analytic symbols, Rend. Circ. Mat. Palermo (2) 47 (1998), 363-374.
  • M. Nowak, Coefficient multipliers of spaces of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), 107-119.
  • M. Nowak, Another proof of boundedness of the Cesàro operator on Hp, Ann. Univ. Mariae Curie-Skłodowska Sect. A 54 (2000), 75-78.
  • M. Nowak, Bloch space and Möbius invariant Besov spaces on the unit ball of Cn, Complex Variables Theory Appl. 44 (2001), 1-12.
  • M. Nowak, On zeros of normal functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), 381-390.
  • M. Nowak, On two linear topologies on Orlicz spaces Lφ. I, Comment. Math. Prace Mat. 23 (1983), 71-84.
  • M. Nowak, On a certain class of meromorphic and univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 39 (1985), 117-130 (1988).
  • M. Nowak, M. Pavlović, On the Libera operator, J. Math. Anal. Appl. 370 (2010), 588-599.
  • M. Nowak, R. Rososzczuk, Weighted sub-Bergman Hilbert spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (2014), 49-57.
  • M. Nowak, P. Waniurski, Random zero sets for Bergman spaces, Math. Proc. Cambridge Philos. Soc. 134 (2003), 337-345.
  • M. Nowak, M. Wołoszkiewicz, Gauss curvature estimates for minimal graphs, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011), 113-120.
  • M. T. Nowak, Function spaces in the unit ball of Cn, Complex function spaces (Mekrijärvi, 1999), (2001), 171-197.
  • W. Nowak, W. Zięba, Types of conditional convergence, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 97-105.
  • P. Oleszczuk, Laguerre entire functions and Sturm-Liouville hypergroups, Methods Funct. Anal. Topology 7 (2001), 67-79.
  • M. Orzóg, Z. Rychlik, On the random functional central limit theorems with almost sure convergence, Probab. Math. Statist. 27 (2007), 125-138.
  • V. Pérez García, Ł. Piasecki, On mean nonexpansive mappings and the Lifshitz constant, J. Math. Anal. Appl. 396 (2012), 448-454.
  • V. Pérez García, Ł. Piasecki, Spectral radius for mean Lipschitzian mappings, Fixed point theory and its applications, (2013), 209-215.
  • L. Paditz, Z. Rychlik, A note on the Katz type theorem for random sums, Bull. Polish Acad. Sci. Math. 34 (1986), 723-727 (1987).
  • M. Paprzycki, P. Stpiczyński, A Brief Introduction to Parallel Computing, Parallel Computing and Statistics, (2006), 3-42.
  • M. Paprzycki, P. Stpiczyński, Solving Linear Recurrence Systems on Parallel Computers, Toward Teraflop Computing and New Grand Challenge Applications - Proceedings of the Conference Mardi Gras'94, Baton Rouge, February 1994, (1995), 379-384.
  • M. Paprzycki, P. Stpiczyński, Solving Linear Recurrence Systems on a Cray Y-MP, Parallel Scientific Computing, First International Workshop, PARA '94, Lyngby, Denmark, June 20-23, 1994, Proceedings, (1994), 416-424.
  • M. Paprzycki, P. Stpiczyński, Parallel Solution of Linear Recurrence Systems, Z. Angew. Math. Mech. 76 (1996), 5-8.
  • P. Pawlas, T. Rychlik, D. Szynal, On a characterization of distributions by expectations of transformed generalized order statistics, Demonstratio Math. 36 (2003), 239-245.
  • P. Pawlas, D. Szynal, Relations for single and product moments of k-th record values from exponential and Gumbel distributions, J. Appl. Statist. Sci. 7 (1998), 53-61.
  • P. Pawlas, D. Szynal, Recurrence relations for single and product moments of k-th record values from Pareto, generalized Pareto and Burr distributions, Comm. Statist. Theory Methods 28 (1999), 1699-1709.
  • P. Pawlas, D. Szynal, Characterizations of the inverse Weibull distribution and generalized extreme value distributions by moments of k-th record values, Appl. Math. (Warsaw) 27 (2000), 197-202.
  • P. Pawlas, D. Szynal, Recurrence relations for single and product moments of k-th record values from Weibull distributions, and a characterization, J. Appl. Statist. Sci. 10 (2000), 17-25.
  • P. Pawlas, D. Szynal, Recurrence relations for single and product moments of k-th lower record values from the inverse distributions of Pareto's type and characterizations, Discuss. Math. Probab. Stat. 20 (2000), 223-231.
  • P. Pawlas, D. Szynal, Recurrence relations for single and product moments of lower generalized order statistics from the inverse Weibull distribution, Demonstratio Math. 34 (2001), 353-358.
  • P. Pawlas, D. Szynal, Recurrence relations for single and product moments of generalized order statistics from Pareto, generalized Pareto, and Burr distributions, Comm. Statist. Theory Methods 30 (2001), 739-746.
  • P. Pawlas, D. Szynal, On characterizations of distributions in terms of lower generalized order statistics, J. Stat. Theory Appl. 2 (2003), 215-222.
  • P. Pawlas, D. Szynal, On a new measure of dependence and its applications, Demonstratio Math. 45 (2012), 243-256.
  • D. Petcu, P. Stpiczyński, Editorial to Special Section on Multi-Agent Systems and Large-Scale Distributed Systems, International Transactions on Systems Science and Applications 3 (2008), 289.
  • Ł. Piasecki, Retracting ball onto sphere in BC0(R), Topol. Methods Nonlinear Anal. 33 (2009), 307-313.
  • Ł. Piasecki, Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), 396-399.
  • Ł. Piasecki, Classification of Lipschitz mappings, CRC Press, Boca Raton, FL, 2014.
  • M. Piekarz, Three simulations of Turing machines with the use of real recursive functions, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 2 (2004), 101-114.
  • M. Piekarz, The extended analog computer and Turing machine, Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 7 (2007), 37-47.
  • M. Piekarz, The extended analog computer and functions computable in a digital sense, Acta Cybernet. 19 (2010), 749-764.
  • P. Pikuta, On sets of constant distance from a planar set, Topol. Methods Nonlinear Anal. 21 (2003), 369-374.
  • P. Pikuta, Darboux problem with a discontinuous right-hand side, J. Appl. Anal. 12 (2006), 147-152.
  • P. Pikuta, Exact values of girth for some graphs D(k,q) and upper bounds of the order of cages, Algebra Discrete Math. (2008), 83-88.
  • P. Pikuta, W. Rzymowski, A discontinuous functional differential equation, J. Math. Anal. Appl. 277 (2003), 122-129.
  • P. Pikuta, W. Rzymowski, Plane convex sets via distributions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 77-84.
  • P. Pikuta, W. Rzymowski, Non-autonomous scalar discontinuous ordinary differential equation, J. Math. Anal. Appl. 307 (2005), 496-503.
  • M. Plaszczyk, The constructions of general connections on second jet prolongation, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (2014), 67-89.
  • M. Polak, Z. Rychlik, Nonuniform central limit bounds and their applications, Colloq. Math. 54 (1987), 149-158.
  • M. Polak, V. Ustimenko, On LDPC codes corresponding to affine parts of generalized polygons, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 11 (2011), 143-152.
  • M. Polak, V. Ustimenko, LDPC codes based on algebraic graphs, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 12 (2012), 107-119.
  • H. Popiel, P. Stpiczyński, Podstawy algorytmizacji, Podstawy technologii informacyjnej i informatyki w przykładach i zadaniach, (2007), 215-230.
  • H. Popiel, P. Stpiczyński, Programowanie w jezyku Pascal, Podstawy technologii informacyjnej i informatyki w przykładach i zadaniach, (2007), 231-272.
  • B. Prus, Steepest descent of locally Lipschitz functionals in super-reflexive spaces, Rend. Circ. Mat. Palermo (2) 42 (1993), 29-34.
  • B. Prus, On a minimization of functionals in Banach spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 165-188 (1981).
  • B. Prus, On the existence of some strictly convex functionals, Ann. Univ. Mariae Curie-Skłodowska Sect. A 38 (1984), 117-124 (1986).
  • B. Prus, R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21.
  • S. Prus, Nearly uniformly smooth Banach spaces, Boll. Un. Mat. Ital. B (7) 3 (1989), 507-521.
  • S. Prus, On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545.
  • S. Prus, A remark on a theorem of Turett, Bull. Polish Acad. Sci. Math. 36 (1988), 225-227 (1989).
  • S. Prus, Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo (2) 40 (1991), 128-135.
  • S. Prus, Banach spaces with the uniform Opial property, Nonlinear Anal. 18 (1992), 697-704.
  • S. Prus, On the modulus of noncompact convexity of a Banach space, Arch. Math. (Basel) 63 (1994), 441-448.
  • S. Prus, Multi-dimensional uniform convexity and uniform smoothness of Banach spaces, Recent advances on metric fixed point theory (Seville, 1995), (1996), 111-136.
  • S. Prus, Banach spaces and operators which are nearly uniformly convex, Dissertationes Math. (Rozprawy Mat.) 363 (1997), 46.
  • S. Prus, Banach spaces which are uniformly noncreasy, Proceedings of the Second World Congress of Nonlinear Analysts, Part 4 (Athens, 1996), (1997), 2317-2324.
  • S. Prus, On infinite-dimensional uniform smoothness of Banach spaces, Comment. Math. Univ. Carolin. 40 (1999), 97-105.
  • S. Prus, Geometrical background of metric fixed point theory, Handbook of metric fixed point theory, (2001), 93-132.
  • S. Prus, Constructing separated sequences in Banach spaces, Proc. Amer. Math. Soc. 138 (2010), 225-234.
  • S. Prus, Academic career and scientific achievements of Professor Kazimierz Goebel, Fixed point theory and its applications, (2013), 3-8.
  • S. Prus, On uniform nonsquareness and uniform normal structure in Banach lattices, J. Convex Anal. 21 (2014), 167-177.
  • S. Prus, Finite-dimensional decompositions with p-estimates and universal Banach spaces, Bull. Polish Acad. Sci. Math. 31 (1983), 281-288 (1984).
  • S. Prus, Finite-dimensional decompositions of Banach spaces with (p,q)-estimates, Dissertationes Math. (Rozprawy Mat.) 263 (1987), 45.
  • S. Prus, M. Szczepanik, New coefficients related to uniform normal structure, J. Nonlinear Convex Anal. 2 (2001), 203-215.
  • S. Prus, M. Szczepanik, Nearly uniformly noncreasy Banach spaces, J. Math. Anal. Appl. 307 (2005), 255-273.
  • S. Prus, M. Szczepanik, On local Milman's moduli, J. Convex Anal. 17 (2010), 1-11.
  • S. Prus, A. Wiśnicki, On the fixed point property in direct sums of Banach spaces with strictly monotone norms, Studia Math. 186 (2008), 87-99.
  • Z. Radziszewski, Geometrical interpretation of the frame field along a curve in the space P(p, q), Ann. Univ. Mariae Curie-Skłodowska Sect. A 41 (1987), 135-141 (1989).
  • Z. Radziszewski, On a certain interpretation of linear connection on a differentiable manifold M, Ann. Univ. Mariae Curie-Skłodowska Sect. A 31 (1977), 97-109 (1979).
  • Z. Radziszewski, The frame field along a curve in the space P(p,q) of p-dimensional planes in the (p+q)-dimensional Euclidean space, Ann. Univ. Mariae Curie-Skłodowska Sect. A 39 (1985), 135-150 (1988).
  • M. O. Reade, E. Złotkiewicz, On values omitted by univalent functions with two pre-assigned values, Compositio Math. 24 (1972), 355-358.
  • M. O. Reade, E. J. Złotkiewicz, Koebe sets for univalent functions with two preassigned values, Bull. Amer. Math. Soc. 77 (1971), 103-105.
  • M. O. Reade, E. J. Złotkiewicz, On univalent functions with two preassigned values, Proc. Amer. Math. Soc. 30 (1971), 539-544.
  • M. O. Reade, E. J. Złotkiewicz, On the equation f(z)=pf(a) in certain classes of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 22-24 (1968/70), 151-153 (1972).
  • M. O. Reade, E. J. Zlotkiewicz, On the equation f(z)=pf(a) in certain classes of analytic functions, Mathematica (Cluj) 13(36) (1971), 281-286.
  • B. Rodzik, Z. Rychlik, An almost sure central limit theorem for independent random variables, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), 1-11.
  • B. Rodzik, Z. Rychlik, On the central limit theorem for independent random variables with almost sure convergence, Probab. Math. Statist. 16 (1996), 299-309.
  • B. Rodzik, Z. Rychlik, Almost sure central limit theorems for weakly dependent random variables, Demonstratio Math. 34 (2001), 375-384.
  • U. Romańczuk, V. Ustimenko, On the key exchange with matrices of large order and graph based nonlinear maps, Albanian J. Math. 4 (2010), 203-211.
  • U. Romańczuk, V. Ustimenko, On families of graphs of large cycle indicator, matrices of large order and key exchange protocols with nonlinear polynomial maps of small degree, Math. Comput. Sci. 6 (2012), 167-180.
  • U. Romańczuk, V. Ustimenko, On the key exchange with new cubical maps based on graphs, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 11 (2011), 11-19.
  • U. Romańczuk, V. Ustimenko, On the family of cubical multivariate cryptosystems based on the algebraic graph over finite commutative rings of characteristic 2, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 12 (2012), 89-106.
  • S. Rudecka, W. Zięba, On a characterization of stability in Renyi's sense in terms of weak convergence of random sequences, Mat. Stud. 6 (1996), 153-156, 162.
  • S. Ruscheweyh, M. Wołoszkiewicz, Estimates for polynomials in the unit disk with varying constant terms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011), 169-178.
  • E. Rychlik, Z. Rychlik, The generalized Anscombe condition and its applications in random limit theorems, Probability theory on vector spaces, II (Proc. Second Internat. Conf., Bł azejewko, 1979), (1980), 244-250.
  • E. Rychlik, Z. Rychlik, On the rates of convergence in the generalized Anscombe theorem, Litovsk. Mat. Sb. 23 (1983), 127-133.
  • Z. Rychlik, On some inequalities for the concentration function of the sum of a random number of independent random variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 65-70.
  • Z. Rychlik, On some problems concerning the inflated binomial distribution, Ann. Univ. Mariae Curie-Skłodowska Sect. A 26 (1972), 37-61 (1974).
  • Z. Rychlik, A central limit theorem for sums of a random number of independent random variables, Colloq. Math. 35 (1976), 147-158.
  • Z. Rychlik, The convergence of Rosen's series for the sums of a random number of independent random variables, Ann. Univ. Mariae Curie-Skłodowska Sect. A 28 (1974), 71-83 (1976).
  • Z. Rychlik, On the rate of convergence in the random-sum central limit theorem, Litovsk. Mat. Sb. 17 (1977), 171-178.
  • Z. Rychlik, A central limit theorem for martingales, Litovsk. Mat. Sb. 18 (1978), 139-145, 202.
  • Z. Rychlik, The order of approximation in the random central limit theorem, Probability theory on vector spaces (Proc. Conf., Trzebieszowice, 1977), (1978), 225-236.
  • Z. Rychlik, Martingale random central limit theorems, Acta Math. Acad. Sci. Hungar. 34 (1979), 129-139.
  • Z. Rychlik, Nonuniform central limit bounds with applications to probabilities of deviations, Teor. Veroyatnost. i Primenen. 28 (1983), 646-652.
  • Z. Rychlik, A remainder term estimate in a random-sum central limit theorem, Bull. Polish Acad. Sci. Math. 33 (1985), 57-63.
  • Z. Rychlik, Some remarks on stable sequences of random variables, Sequential methods in statistics, (1985), 455-463.
  • Z. Rychlik, W. Skublewski, T. Walczyński, On the random functional central limit theorems in L2[0,1] with almost sure convergence, Acta Sci. Math. (Szeged) 73 (2007), 745-765.
  • Z. Rychlik, K. S. Szuster, On strong versions of the central limit theorem, Statist. Probab. Lett. 61 (2003), 347-357.
  • Z. Rychlik, K. S. Szuster, Some remarks on the almost sure central limit theorem for independent random variables, Probab. Math. Statist. 23 (2003), 241-249.
  • Z. Rychlik, K. S. Szuster, On the random functional central limit theorems with almost sure convergence for subsequences, Demonstratio Math. 45 (2012), 283-296.
  • Z. Rychlik, D. Szynal, On the limit behaviour of the sums of a random number of independent random variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 401-406.
  • Z. Rychlik, D. Szynal, On the limit behaviour of sums of a random number of independent random variables, Colloq. Math. 28 (1973), 147-159.
  • Z. Rychlik, D. Szynal, On the convergence rates in the central limit theorem for the sums of a random number of independent identically distributed random variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 683-690.
  • Z. Rychlik, D. Szynal, Convergence rates in the central limit theorem for sums of a random number of independent random variables, Teor. Verojatnost. i Primenen. 20 (1975), 359-370.
  • Z. Rychlik, D. Szynal, A functional random-sum central limit theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 1013-1018.
  • Z. Rychlik, D. Szynal, Inflated truncated negative binomial acceptance sampling plan, Apl. Mat. 22 (1977), 157-165.
  • Z. Rychlik, D. Szynal, On the rate of approximation in the random-sum central limit theorem, Teor. Veroyatnost. i Primenen. 24 (1979), 614-620.
  • Z. Rychlik, D. Szynal, On the rate of convergence in the central limit theorem, Probability theory (Papers, VIIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1976), (1979), 221-229.
  • Z. Rychlik, I. Szyszkowski, Weak convergence of functionals of sums for martingale differences, Bull. Polish Acad. Sci. Math. 31 (1983), 407-413 (1984).
  • Z. Rychlik, I. Szyszkowski, On the rate of convergence for distributions of integral type functionals, Probability theory on vector spaces, III (Lublin, 1983), (1984), 255-275.
  • Z. Rychlik, I. Szyszkowski, Weak convergence theorem for functionals of sums of reversed martingale arrays, Yokohama Math. J. 33 (1985), 21-28.
  • Z. Rychlik, I. Szyszkowski, On the rate of convergence for linear functionals of sums of martingale differences, Probability and statistical decision theory, Vol. A (Bad Tatzmannsdorf, 1983), (1985), 301-310.
  • Z. Rychlik, I. Szyszkowski, A weak convergence theorem for functionals of sums of martingale differences, Math. Nachr. 130 (1987), 151-155.
  • Z. Rychlik, I. Szyszkowski, Weak convergence of integral type functionals, Probability theory and mathematical statistics, Vol. II (Vilnius, 1985), (1987), 525-533.
  • Z. Rychlik, I. Szyszkowski, The invariance principle for φ-mixing sequences, Teor. Veroyatnost. i Primenen. 32 (1987), 616-619.
  • Z. Rychlik, T. Walczyński, Convergence in law of random sums with nonrandom centering, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part III (Nalpolhk eczow, 1999), (2001), 2860-2864.
  • Z. Rychlik, J. Zygo, Almost sure convergence of sequences with random indices, Yokohama Math. J. 38 (1991), 95-101.
  • Z. Rychlik, J. Zygo, Strassen's invariance principle for random subsequences, Statist. Probab. Lett. 13 (1992), 193-197.
  • Z. Ryhlik, The rate of convergence in some limit theorems for sums of a random number of random terms, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk (1979), 25-29, 93.
  • Z. Ryhlik, The Berry-Esseen inequality for sums of a random number of independent random variables, Mat. Zametki 28 (1980), 301-304, 320.
  • E. Sędłak, A. Wiśnicki, On the structure of fixed-point sets of uniformly Lipschitzian mappings, Topol. Methods Nonlinear Anal. 30 (2007), 345-350.
  • T. Shaska, V. Ustimenko, On the homogeneous algebraic graphs of large girth and their applications, Linear Algebra Appl. 430 (2009), 1826-1837.
  • T. Shaska, V. Ustimenko, On some applications of graphs to cryptography and turbocoding, Albanian J. Math. 2 (2008), 249-255.
  • M. Skrzypiec, A note on secantoptics, Beiträge Algebra Geom. 49 (2008), 205-215.
  • U. Skwara, A stochastic model of symbiosis, Ann. Polon. Math. 97 (2010), 257-272.
  • U. Skwara, A stochastic symbiosis model with degenerate diffusion process, Ann. Polon. Math. 98 (2010), 111-128.
  • P. Sobolewski, Inequalities for Bergman spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 137-143.
  • P. Sobolewski, Properties of harmonic conjugates, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 143-147.
  • P. Stpiczyński, Optymalizacja obliczeń rekurencyjnych na komputerach wektorowych i równoległych, Studia Informatica 29 (2008),
  • P. Stpiczyński, Numerical evaluation of linear recurrences on various parallel computers, Proceedings of Aplimat 2004, 3rd International Conference, Bratislava, Slovakia, February 4-6, 2004, (2004), 889-894.
  • P. Stpiczyński, Programowanie serwerów gier w jezyku Java, Informatyka w Szkole XIV, (1998), 193-194.
  • P. Stpiczyński, Implementacja rozproszonej pamieci wspólnej przy pomocy zdalnego wywolywania procedur, Obliczenia naukowe. Wybrane problemy, (2003), 47-53.
  • P. Stpiczyński, A Note on the Numerical Inversion of the Laplace Transform, Parallel Processing and Applied Mathematics, 6th International Conference, PPAM 2005, Poznan, Poland, September 11-14, 2005, Revised Selected Papers, (2006), 551-558.
  • P. Stpiczyński, Valuable Resources on Aspects of Scalable Computing, IEEE Distributed Systems Online 5 (2004),
  • P. Stpiczyński, Ada as a language for programming clusters of SMPs, Annales UMCS Informatica 1 (2003), 73-79.
  • P. Stpiczyński, Fast solver for Toeplitz bidiagonal systems of linear equations, Annales UMCS Informatica 1 (2003), 81-87.
  • P. Stpiczyński, Evaluating linear recursive filters on clusters of workstations, Annales UMCS Informatica 2 (2004), 263-268.
  • P. Stpiczyński, M. Brzuszek, Podstawy programowania obliczeń równoległych, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, 2011.
  • P. Stpiczyński, M. Brzuszek, Programowanie współbiezne i rozproszone w jezyku Java, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, 2012.
  • P. Stpiczyński, M. Paprzycki, Numerical Software for Solving Dense Linear Algebra Problems on High Performance Computers, Proceedings of Aplimat 2005, 4th International Conference, Bratislava, Slovakia, February 2005, (2005), 207-218.
  • P. Stpiczyński, J. Potiopa, Solving a kind of boundary-value problem for ordinary differential equations using Fermi - the next generation CUDA computing architecture, J. Comput. Appl. Math. 236 (2011), 384-393.
  • P. Stpiczyński, Parallel Algorithms for Solving Linear Recurrence Systems, Parallel Processing: CONPAR 92 - VAPP V, Second Joint International Conference on Vector and Parallel Processing, Lyon, France, September 1-4, 1992, Proceedings, (1992), 434-348.
  • P. Stpiczyński, Solving Linear Recurrence Systems on Hybrid GPU Accelerated Manycore Systems, Proceedings of the Federated Conference on Computer Science and Information Systems, September 18-21, 2011, Szczecin, Poland, (2011), 465-470.
  • P. Stpiczyński, Solving a kind of BVP for second-order ODEs using novel data formats for dense matrices, Proceedings of the International Multiconference on Computer Science and Information Technology, IMCSIT 2008, Wisla, Poland, 20-22 October 2008, (2008), 293-296.
  • P. Stpiczyński, New Data Distribution for Solving Triangular Systems on Distributed Memory Machines, Applied Parallel Computing. State of the Art in Scientific Computing, 8th International Workshop, PARA 2006, Umeå, Sweden, June 18-21, 2006, Revised Selected Papers, (2007), 589-597.
  • P. Stpiczyński, Fast Parallel Algorithms for Computing Trigonometric Sums, 2002 International Conference on Parallel Computing in Electrical Engineering (PARELEC 2002), 22-25 September 2002, Warsaw, Poland, (2002), 299-304.
  • P. Stpiczyński, Numerical Evaluation of Linear Recurrences on High Performance Computers and Clusters of Workstations, 2004 International Conference on Parallel Computing in Electrical Engineering (PARELEC 2004), 7-10 September 2004, Dresden, Germany, (2004), 200-205.
  • P. Stpiczyński, A New Message Passing Algorithm for Solving Linear Recurrence Systems, Parallel Processing and Applied Mathematics, 4th International Conference, PPAM 2001 Naleczow, Poland, September 9-12, 2001, Revised Papers, (2002), 466-476.
  • P. Stpiczyński, Solving Linear Recurrence Systems Using Level 2 and 3 BLAS Routines, Parallel Processing and Applied Mathematics, 5th International Conference, PPAM 2003, Czestochowa, Poland, September 7-10, 2003. Revised Papers, (2004), 1059-1066.
  • P. Stpiczyński, Evaluating Linear Recursive Filters Using Novel Data Formats for Dense Matrices, Parallel Processing and Applied Mathematics, 7th International Conference, PPAM 2007, Gdansk, Poland, September 9-12, 2007, Revised Selected Papers, (2008), 688-697.
  • P. Stpiczyński, A Parallel Non-square Tiled Algorithm for Solving a Kind of BVP for Second-Order ODEs, Parallel Processing and Applied Mathematics, 8th International Conference, PPAM 2009, Wrocław, Poland, September 13-16, 2009. Revised Selected Papers, Part I, (2010), 87-94.
  • P. Stpiczyński, Evaluating recursive filters on distributed memory parallel computers, Commun. Numer. Methods Eng. 22 (2006), 1087-1095.
  • P. Stpiczyński, Review of the Book: Local Area Networks: A Client / Server Approach, by James E. Goldman, IEEE Concurrency 5 (1997), 75-76.
  • P. Stpiczyński, Review of the Book: Proceedings of the Eight SIAM Conference on Parallel Processing for Scientific omputing, by Michael Heath et Al., Eds., IEEE Concurrency 6 (1998), 94.
  • P. Stpiczyński, Book Review: Parallel Programming in OpenMP Helps Novices (A review of Parallel Programming in OpenMP by Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon), IEEE Distributed Systems Online 3 (2002),
  • P. Stpiczyński, Technika Data-Parallel w programowaniu obliczeń rozproszonych, Informatyka Stosowana (2000), 193-198.
  • P. Stpiczyński, OmpBLAS - biblioteka do obliczeń numerycznych na komputerach z pamiecią wspólną, Informatyka Stosowana (2001), 291-298.
  • P. Stpiczyński, Snobol4: czy warto ozywiać dinozaury ?, Informatyka Stosowana (2002), 312-318.
  • P. Stpiczyński, Metoda optymalizacji algorytmów divide & conquer na superkomputerach, Informatyka Stosowana (1998), 159-166.
  • P. Stpiczyński, Fast Parallel Algorithm for Polynomial Evaluation, Parallel Algorithms Appl. 18 (2003), 209-216.
  • P. Stpiczyński, Parallel Cholesky factorization on orthogonal multiprocessors, Parallel Computing 18 (1992), 213-219.
  • P. Stpiczyński, Error Analysis of Two Parallel Algorithms for Solving Linear Recurrence Systems, Parallel Computing 19 (1993), 917-923.
  • P. Stpiczyński, Efficient Data-Parallel Algorithms for Computing Trigonometric Sums, Annales Univ. Mariae Curie-Sklodowska Sect. A 56 (2002), 85-96.
  • P. Stpiczyński, M. Paprzycki, Parallel Algorithms for Finding Trigonometric Sums, Parallel Processing for Scientific Computing - Proceedings of the Sixth SIAM Conference on Parallel Computing, San Francisco, February 1995, (1995), 291-292.
  • P. Stpiczyński, M. Paprzycki, Fully Vectorized Solver for Linear Recurrence Systems with Constant Coefficients, Proceedings of VECPAR 2000 - 4th International Meeting on Vector and Parallel Processing, Porto, June 2000, (2000), 541-551.
  • P. Stpiczyński, J. Potiopa, Solving a Kind of BVP for ODEs on heterogeneous CPU + CUDA-enabled GPU Systems, International Multiconference on Computer Science and Information Technology - IMCSIT 2010, Wisla, Poland, 18-20 October 2010, Proceedings, (2010), 349-353.
  • P. Stpiczyński, J. Potiopa, Piecewise Cubic Interpolation on Distributed Memory Parallel Computers and Clusters of Workstations, Fifth International Conference on Parallel Computing in Electrical Engineering (PARELEC 2006), 13-17 September 2006, Bialystok, Poland, (2006), 284-289.
  • P. Stpiczyński, J. Potiopa, Solving a kind of boundary-value problem for ordinary differential equations using Fermi - The next generation CUDA computing architecture, J. Computational Applied Mathematics 236 (2011), 384-393.
  • P. Stpiczyński, D. Szałkowski, J. Potiopa, Parallel GPU-accelerated Recursion-based Generators of Pseudorandom Numbers, Proceedings of the Federated Conference on Computer Science and Information Systems, September 9-12, 2012, Wroclaw, Poland, (2012), 571-578.
  • V. Ī. Suščansrimekiuı, V. A. Ustimenko-Bakumovskiuı, Characterization of types of Boolean functions, Computations in algebra, number theory and combinatorics (Russian), (1980), 47-59, 86-87.
  • V. I. Sushchanskiuı, F. G. Lazebnik, V. A. Ustimenko et al., Lev Arkadrime evich Kaluv znin (1914-1990), Acta Appl. Math. 52 (1998), 5-18.
  • D. Szałkowski, Isoptics of open rosettes, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 119-128.
  • D. Szałkowski, Isoptics of open rosettes. II, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 53 (2007), 167-176.
  • D. Szałkowski, Singular points of isoptics of open rosettes, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 60 (2014), 85-98.
  • D. Szałkowski, Isoptics of open rosettes II, Annals of the Alexandru Ioan Cuza University - Mathematics LIII (2007), 167-176.
  • D. Szałkowski, Singular points of isoptics of open rosettes, Annals of the Alexandru Ioan Cuza University - Mathematics LX (2014), 85-98.
  • D. Szałkowski, Isoptics of open rosettes, ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LIX (2005), 119-128.
  • D. Szałkowski, P. Stpiczyński, Template Library for Multi-GPU Pseudorandom Number Recursion-based Generators, Proceedings of the Federated Conference on Computer Science and Information Systems, September 8-11, 2013, Krakow, Poland, (2013), 515-519.
  • D. Szałkowski, P. Stpiczyński, Multidimensional Monte Carlo Integration on Clusters with Hybrid GPU-accelerated Nodes, Parallel Processing and Applied Mathematics, 10th International Conference, PPAM 2013, Warsaw, Poland, September 8-11, 2013, Revised Selected Papers, Part I, (2014), 603-612.
  • D. Szałkowski, P. Stpiczyński, Using distributed memory parallel computers and GPU clusters for multidimensional Monte Carlo integration, Concurrency and Computation Practice and Experience (2014),
  • M. Szczepanik, Integration of semi-infinite Toda chain in some class of unbounded solutions, Rep. Math. Phys. 39 (1997), 263-273.
  • D. Szynal, A. Wolińska, On classes of couples of characteristic functions satisfying the condition of Dugué, Comment. Math. Prace Mat. 23 (1983), 325-328.
  • D. Szynal, W. Zięba, On some type of convergence in law, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1143-1149.
  • D. Szynal, W. Zięba, On infinitely divisible generalized distributions in Rk, Ann. Univ. Mariae Curie-Skłodowska Sect. A 27 (1973), 121-129 (1975).
  • D. Szynal, W. Zięba, On some properties of the stable sequences of random elements, Publ. Math. Debrecen 33 (1986), 271-282.
  • D. Szynal, W. Zięba, On some characterization of almost sure convergence, Bull. Polish Acad. Sci. Math. 34 (1986), 635-642 (1987).
  • A. Touzene, V. Ustimenko, Private and public key systems using graphs of high girth, Cryptography research perspectives, (2009), 205-216.
  • V. Ustimenko, CRYPTIM: graphs as tools for symmetric encryption, Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), (2001), 278-286.
  • V. Ustimenko, On the cryptographical properties of extremal algebraic graphs, Algebraic aspects of digital communications, (2009), 256-281.
  • V. Ustimenko, Schubert cells in Lie geometries and key exchange via symbolic computations, Albanian J. Math. 4 (2010), 135-145.
  • V. A. Ustimenko, Groups, quasigroups and Tits geometries, Problems in algebra, No. 4 (Russian) (Gomelrime, 1986), (1989), 89-103.
  • V. A. Ustimenko, Linear interpretation of the geometries of flags of Chevalley groups, Ukrain. Mat. Zh. 42 (1990), 383-387.
  • V. A. Ustimenko, Flag varieties for affine Lie algebras, Problems in group theory and in homological algebra (Russian), (1989), 155-157.
  • V. A. Ustimenko, On embedding of some geometries and flag systems in Lie algebras and superalgebras, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint (1990), 3-17.
  • V. A. Ustimenko, Computations in Coxeter groups and related geometric objects, Ukrain. Mat. Zh. 43 (1991), 1055-1060.
  • V. A. Ustimenko, Fine Schubert cells as subsets in Lie algebras, Funktsional. Anal. i Prilozhen. 25 (1991), 81-83.
  • V. A. Ustimenko, A linear interpretation of the geometries of flags of simple Lie-type groups of twisted type, Problems in group theory and homological algebra (Russian), (1990), 4-20.
  • V. A. Ustimenko, On p-local analysis of permutation groups, Investigations in algebraic theory of combinatorial objects, (1994), 153-166.
  • V. A. Ustimenko, Ramanujan graphs of a given degree, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (1997), 37-41.
  • V. A. Ustimenko, On the varieties of parabolic subgroups, their generalizations and combinatorial applications, Acta Appl. Math. 52 (1998), 223-238.
  • V. A. Ustimenko, Graphs with special arcs and cryptography, Acta Appl. Math. 74 (2002), 117-153.
  • V. A. Ustimenko, On a group theoretical construction of expanding graphs, Algebra Discrete Math. (2003), 102-109.
  • V. A. Ustimenko, Maximality of affine group, and hidden graph cryptosystems, Algebra Discrete Math. (2005), 133-150.
  • V. A. Ustimenko, On linguistic dynamical systems, families of graphs of large girth, and cryptography, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 326 (2005), 214-234, 283-284.
  • V. A. Ustimenko, On graph-based cryptography and symbolic computations, Serdica J. Comput. 1 (2007), 131-156.
  • V. A. Ustimenko, On the extremal regular directed graphs without commutative diagrams and their applications in coding theory and cryptography, Albanian J. Math. 1 (2007), 283-295.
  • V. A. Ustimenko, On the extremal graph theory for directed graphs and its cryptographical applications, Advances in coding theory and cryptography, (2007), 181-199.
  • V. A. Ustimenko, Algebraic groups and small world graphs of high girth, Albanian J. Math. 3 (2009), 25-33.
  • V. A. Ustimenko, Maximality of finite Chevalley groups acting on classes of conjugate maximal parabolic subgroups, Dokl. Akad. Nauk SSSR 275 (1984), 809-813.
  • V. A. Ustimenko, Exponentiation of symmetric groups - maximal permutation group, Problems in group theory and homological algebra, (1983), 19-33, 136.
  • V. A. Ustimenko, Tits geometries and division algebras, Dokl. Akad. Nauk SSSR 296 (1987), 1061-1065.
  • V. A. Ustimenko, Indices of the intersections of the Hecke algebras H( PGLn(q), BWJB), Investigations in the algebraic theory of combinatorial objects (Russian), (1985), 95-104.
  • V. A. Ustimenko, Some properties of the geometries of Chevalley groups and of their generalizations, Investigations in the algebraic theory of combinatorial objects (Russian), (1985), 134-148.
  • V. A. Ustimenko, V. M. Futorny, On Hecke algebras corresponding to Tits geometries, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint (1990), 18-29.
  • V. A. Ustimenko, A. J. Woldar, An improvement on the ErdH os bound for graphs of girth 16, Second International Conference on Algebra (Barnaul, 1991), (1995), 419-425.
  • V. A. Ustimenko, A. J. Woldar, Extremal properties of regular and affine generalized m-gons as tactical configurations, European J. Combin. 24 (2003), 99-111.
  • V. Ustimenko, J. Kotorowicz, On the properties of stream ciphers based on extremal directed graphs, Cryptography research perspectives, (2009), 125-141.
  • V. Ustimenko, A. Wróblewska, On the key expansion of D(n,K)-based cryptographical algorithm, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 11 (2011), 95-111.
  • V. Ustimenko, A. Wróblewska, On the key exchange with nonlinear polynomial maps of degree 4, Albanian J. Math. 4 (2010), 161-170.
  • V. Ustimenko, A. Wróblewska, Dynamical systems as the main instrument for the constructions of new quadratic families and their usage in cryptography, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 12 (2012), 65-74.
  • V. Ustimenko, A. Wróblewska, On the key exchange and multivariate encryption with nonlinear polynomial maps of stable degree, Ann. Univ. Mariae Curie-Skłodowska Sect. AI-Inform. 13 (2013), 63-80.
  • V. O. Ustimenko, An approach to the construction of Tits geometries, Vi snik Kii v. Uni v. Ser. Mat. Mekh. (1985), 110-112, 129.
  • V. A. Ustimenko-Bakumovskiuı, The lattice of overgroups of an induced symmetric group, Dokl. Akad. Nauk SSSR 237 (1977), 276-279.
  • V. A. Ustimenko-Bakumovskiuı, Maximality of the group PΓLn(q) that acts on subspaces of dimension m, Dokl. Akad. Nauk SSSR 240 (1978), 1305-1308.
  • V. A. Ustimenko-Bakumovskiuı, Strongly regular graphs invariant with respect to groups [γ n]γm when n>=3, Computations in algebra and combinatorial analysis (Russian), (1978), 101-113.
  • V. A. Ustimenko-Bakumovskiuı, Algorithm for construction of block designs and strongly regular graphs with a given group of automorphisms, Computations in algebra and combinatorial analysis (Russian), (1978), 137-148.
  • V. A. Ustimenko-Bakumovskiuı, Groups of automorphisms of strongly regular graphs that are invariant with respect to exponentiation of symmetric groups, Computations in algebra, number theory and combinatorics (Russian), (1980), 59-72, 87.
  • A. Walczuk, Central limit theorem for an additive functional of a Markov process, stable in the Wesserstein metric, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 149-159.
  • A. Wiśnicki, On a measure of noncompactness in the space of continuous functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 123-126 (1992).
  • A. Wiśnicki, Hausdorff measure of noncompactness in subspaces of continuous functions of codimension one, Nonlinear Anal. 25 (1995), 223-228.
  • A. Wiśnicki, Towards the fixed point property for superreflexive spaces, Bull. Austral. Math. Soc. 64 (2001), 435-444.
  • A. Wiśnicki, Neocompact sets and the fixed point property, J. Math. Anal. Appl. 267 (2002), 158-172.
  • A. Wiśnicki, Products of uniformly noncreasy spaces, Proc. Amer. Math. Soc. 130 (2002), 3295-3299 (electronic).
  • A. Wiśnicki, On a problem of common approximate fixed points, Nonlinear Anal. 52 (2003), 1637-1643.
  • A. Wiśnicki, An example of a nonexpansive mapping which is not 1-ball-contractive, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 141-146.
  • A. Wiśnicki, On the super fixed point property in product spaces, J. Funct. Anal. 236 (2006), 447-456.
  • A. Wiśnicki, On fixed-point sets of nonexpansive mappings in nonstandard hulls and Banach space ultrapowers, Nonlinear Anal. 66 (2007), 2720-2730.
  • A. Wiśnicki, Corrigendum to: ``On the super fixed point property in product spaces'' [J. Funct. Anal. bf 236 (2006), no. 2, 447-456; refcno 2240170], J. Funct. Anal. 254 (2008), 2313-2315.
  • A. Wiśnicki, On a nonstandard approach to invariant measures for Markov operators, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (2010), 73-80.
  • A. Wiśnicki, On the fixed points of nonexpansive mappings in direct sums of Banach spaces, Studia Math. 207 (2011), 75-84.
  • A. Wiśnicki, On the structure of fixed-point sets of asymptotically regular semigroups, J. Math. Anal. Appl. 393 (2012), 177-184.
  • A. Wiśnicki, The super fixed point property for asymptotically nonexpansive mappings, Fund. Math. 217 (2012), 265-277.
  • A. Wiśnicki, The fixed point property in direct sums and modulus R(a,X), Bull. Aust. Math. Soc. 89 (2014), 79-91.
  • A. Wiśnicki, Hölder continuous retractions and amenable semigroups of uniformly Lipschitzian mappings in Hilbert spaces, Topol. Methods Nonlinear Anal. 43 (2014), 89-96.
  • A. Wiśnicki, J. Wośko, On relative Hausdorff measures of noncompactness and relative Chebyshev radii in Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 2465-2474.
  • A. Wiśnicki, J. Wośko, On a generalization of the Lifschitz constant, Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, Vol. II (Acquafredda di Maratea, 1996), (1998), 817-820.
  • A. Wiśnicki, J. Wośko, Banach ultrapowers and multivalued nonexpansive mappings, J. Math. Anal. Appl. 326 (2007), 845-857.
  • J. Widomski, On the Coefficient Problem of Meromorphic Harmonic Mappings, Demonstr. Math. 47 (2014), 848-853.
  • J. Wośko, An example related to the retraction problem, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 127-130 (1992).
  • A. J. Woldar, V. A. Ustimenko, An application of group theory to extremal graph theory, Group theory (Granville, OH, 1992), (1993), 293-298.
  • A. Wolińska, On a problem of Dugué for generalized characteristic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 34 (1980), 97-101 (1983).
  • A. Wolińska-Welcz, Note on a solution of the Dugué's problem, Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Vol. B (Prague, 1986), (1988), 433-439.
  • A. Wolińska-Welcz, On a solution of the Dugué problem, Bull. Polish Acad. Sci. Math. 33 (1985), 421-423.
  • A. Wolińska-Welcz, On a solution of the Dugué problem, Probab. Math. Statist. 7 (1986), 169-185.
  • A. Wróblewska, On some properties of graph based public keys, Albanian J. Math. 2 (2008), 229-234.
  • E. Złotkiewicz, On a variational formula for starlike functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 15 (1961), 111-113.
  • E. Złotkiewicz, Sur les domaines des valeurs de certaines fonctionnelles dans la classe U(p), Ann. Univ. Mariae Curie-Sklodowska Sect. A 18 (1964), 73-83 (1967).
  • E. Złotkiewicz, Some remarks concerning close-to-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 21 (1967), 47-51 (1972).
  • E. Złotkiewicz, Some remarks concerning meromorphic univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 21 (1967), 53-61 (1972).
  • E. Złotkiewicz, The region of variability of the ratio f(b)/f(c) within the class of meromorphic and univalent functions in the unit disc, Proceedings of the Fifth Conference on Analytic Functions (Univ. Mariae Curie-Skłodowska, Lublin, 1970), (1968/70), 201-208 (1972).
  • E. Złotkiewicz, A note on Professor Jan Grzegorz Krzyż, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011), vii-viii.
  • E. Złotkiewicz, Remembrance of Jan Grzegorz Krzyż, ``60 years of analytic functions in Lublin'' - in memory of our professors and friends Jan G. Krzyż, Zdzisław Lewandowski and Wojciech Szapiel, (2012), 1-6.
  • E. Złotkiewicz, Coefficients of inverses of univalent functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1984), 59-72.
  • E. Złotkiewicz, Jan Grzegorz Krzyż, Ann. Univ. Mariae Curie-Skłodowska Sect. A 36/37 (1982/83), i-iv (1985).
  • V. V. Zhdan-Pushkin, V. A. Ustimenko, Maximality of finite classical groups acting on totally isotropic subspaces, Selecta Math. Soviet. 9 (1990), 339-354.
  • V. V. Zhdan-Pushkin, V. A. Ustimenko, Maximality of finite classical groups that act on totally isotropic subspaces, Problems in group theory and homological algebra (Russian), (1987), 39-54.
  • V. V. Zhdan-Pushkin, V. A. Ustimenko, Maximality of PSp6(q), acting on three-dimensional completely isotropic subspaces, Ukrain. Mat. Zh. 36 (1984), 698-704.
  • V. V. Zhdan-Pushkin, V. A. Ustimenko, Maximality of some classical transformation groups, Problems in group theory and homological algebra (Russian), (1985), 125-139, 165.
  • V. V. Zhdan-Pushkin, V. A. Ustimenko, Classical groups and metric schemes of relations, Kibernetika (Kiev) (1986), 13-19, 133.
  • W. Zięba, On relations between modes of convergence of a sequence of random elements, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 581-586.
  • W. Zięba, On modes of convergence in a sequence of probability spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 1029-1035.
  • W. Zięba, On the Riesz decomposition for conditional amarts, Bull. Polish Acad. Sci. Math. 36 (1988), 333-339 (1989).
  • W. Zięba, On some properties of conditional amarts, Teor. Veroyatnost. i Primenen. 36 (1991), 616-617.
  • W. Zięba, Some special properties of conditional expectation, Acta Math. Hungar. 62 (1993), 385-393.
  • W. Zięba, On some criterion of convergence in probability, Probab. Math. Statist. 6 (1985), 225-232.
  • W. Zięba, On some properties of a set of probability measures, Acta Math. Hungar. 49 (1987), 349-352.
  • W. Zięba, Conditional semiamarts and conditional amarts, Mathematical statistics and probability theory, Vol. A (Bad Tatzmannsdorf, 1986), (1987), 305-315.
  • W. Zięba, A note on conditional Fatou lemma, Probab. Theory Related Fields 78 (1988), 73-74.
  • W. Zięba, On the L1F convergence for conditional amarts, J. Multivariate Anal. 26 (1988), 104-110.